
www.ki-innovationen.de

EXPLAINABLE AI
Requirements, Use Cases and 
Solutions

Artificial intelligence as a driver for  
economically relevant ecosystems 
Technology programme of the Federal Ministry 
for Economic Affairs and Climate Action

Study commissioned by the Federal Ministry for Economic Affairs and Climate Action (BMWK)  
within the framework of the mandated accompanying research for the technology program “Artificial 
Intelligence as a Driver for Economically Relevant Ecosystems” (AI innovation competition)



2 EXPLAINABLE AI

IMPRINT

Publisher
Technology Programme AI Innovation Competition
of the Federal Ministry for Economic Affairs and Climate Action
Accompanying research
iit - Institute for Innovation and Technology in the VDI/VDE Innovation + Technik GmbH
Dr. Steffen Wischmann
Steinplatz 1
10623 Berlin
wischmann@iit-berlin.de  

Authors
Dr. Tom Kraus
Lene Ganschow
Marlene Eisenträger 
Dr. Steffen Wischmann

Design
LHLK Agentur für Kommunikation GmbH
Hauptstr. 28
10827 Berlin
KI-Innovationswettbewerb@lhlk.de  

Status
April 2022

Images
peshkov (title, p. 6), Yucel Yilmaz (p. 12, 17, 19) – stock.adobe.com 

The original study “Explainable AI - Requirements, Use Cases and  Solutions” 
was conducted by the mandated accompanying research for the AI 
 Innovation Competition on behalf of the Federal Ministry for  Economic 
 Affairs and Climate Action and published in April 2021. This English 
 translation was published in April 2022.



3EXECUTIVE SUMMARY

EXECUTIVE SUMMARY

For Germany alone, it is expected that services and products based on the use of artificial intel-
ligence (AI) will generate revenues of 488 billion euros in 2025 - this would represent 13 percent 
of Germany’s gross domestic product. In important application sectors, the explainability of 
decisions made by AI is a prerequisite for acceptance by users, for approval and certification 
procedures, or for compliance with the transparency obligations required by the GDPR. The 
explainability of AI products is therefore one of the most important market success factors, at 
least in the European context.

This study was conducted by the accompanying research for the innovation competition 
“Artificial Intelligence as a Driver for Economically Relevant Ecosystems” (AI Innovation 
Competition) on behalf of the Federal Ministry for Economic Affairs and Climate Action. 
The study is based on the results of an online survey and in-depth interviews with AI ex-
perts from industry and science. The study summarizes the current state of the art and the 
use of Explainable Artificial Intelligence (XAI) and explains it using practical use cases.

The core of AI-based applications - by which we essentially mean machine learning applications 
here - is always the underlying AI models. These can be divided into two classes: White-box 
and black-box models. White-box models, such as decision trees based on comprehensible 
input variables, allow the basic comprehension of their algorithmic relationships. They are 
thus self-explanatory with respect to their mechanisms of action and the decisions they make. 
In the case of black-box models such as neural networks, it is usually no longer possible to 
understand the inner workings of the model due to their interconnectedness and multi-layered 
structure. However, at least for the explanation of individual decisions (local explainability), 
additional explanatory tools can be used in order to subsequently increase comprehensibility. 
Depending on the specific requirements, AI developers can fall back on established explanation 
tools, e.g. LIME, SHAP, Integrated Gradients, LRP, DeepLift or GradCAM, which, however, require 
expert knowledge. For mere users of AI, only few good tools exist so far that provide intuitively 
understandable decision explanations (saliency maps, counterfactual explanations, prototypes 
or surrogate models).

The participants in the survey conducted as part of this study use popular representatives of 
white-box models (statistical/probabilistic models, decision trees) and black-box models (neural 
networks) to roughly the same extent today. In the future, however, according to the survey, 
a greater use of black-box models is expected, especially neural networks. This means that 
the importance of explanatory strategies will continue to increase in the future, while they are 
already an essential component of many AI applications today. The importance of explainability 
varies greatly depending on the industry. It is considered by far the most important in the health-
care sector, followed by the financial sector, the manufacturing sector, the construction industry 
and the process industry.
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Four use cases were analyzed in more detail through in-depth interviews with proven experts. 
The use cases comprise image analysis of histological tissue sections as well as text analysis 
of doctors’ letters from the health care domain, machine condition monitoring in manufacturing, 
and AI-supported process control in the process industry. Among these, model explanations 
that make the model-internal mechanisms of action comprehensible (global explainability) are 
only indispensable for the process control case as a strict approval requirement. In the other use 
cases, local explainability is sufficient as a minimum requirement. Global explainability, however, 
plays a key role in the acceptance of AI-supported products in the considered use cases related 
to manufacturing industries.

Furthermore, the use case analyses show that the selection of a suitable explanation strategy 
depends on the target groups, the data types used and the AI model used. The study analyzes 
the advantages and disadvantages of the established tools along these criteria and offers a 
corresponding decision support (see Figure 1). Since white-box models are self-explanatory in 
terms of model action mechanisms and individual decisions, they should be preferred for all ap-
plications that place high demands on comprehensibility - whenever possible. Especially if they 
perform similarly well, or at least sufficiently well, compared to black-box models.

It can be assumed that with the increasing use of AI in business, the need for reliable and 
intuitive explanation strategies will also increase significantly in the future. In order to meet this 
demand, the following technical and non-technical challenges currently need to be overcome:

• New and further development of suitable “hybrid” approaches that combine data- and knowl-
edge-driven approaches, or white- and black-box modelling approaches respectively.

• Consideration of aspects from behavioural and cognitive science - such as the measurability  
of the quality of an explanation from the user’s point of view, automated adaptations of 
explanations to users, explainability of holistic AI systems - in order to improve explainable AI 
systems

• Definition of application and risk classes from which the basic necessity of an explanation 
for given use cases can be derived

• Definition of uniform requirements for the explainability of AI and thus the creation of clear 
regulatory specifications and approval guidelines corresponding to the application and risk 
classes

• Creation of approval and (re)certification frameworks for systems continuously learning 
during operational deployment

• Provision and implementation of comprehensive education and training programs for exam-
iners and inspectors to verify the explainability of AI.
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For which target group should the AI model be comprehensible?

Use  
White-Box-Model 

LIME

Figurative  
Explanation  

(„Saliency Map“) e.g. 
with LRP/Deep LIFT/

Integrated  
Gradients/ 
GradCAM

SHAP/LIME/ 
Surrogat Surrogat

Surrogat
Prototypes/ 

Counterfactual  
Explanations

Integrated  
GradientsSHAPLIME/ 

Surrogat
LRP/ 

DeepLIFT

Integrated  
Gradients/SHAP/ 
LRP/DeepLIFT/ 

GradCAM/LIME/ 
Surrogat

NO

YESYES

UNIMPORTANT

YES

UNIMPORTANT

YES

YES

YES

NO

UNIMPORTANT

AI DEVELOPERS DOMAIN EXPERTS  
(no or little understanding of AI)

NO

NO

NO

YES

YES

Guidance on the use of the most common strategies and tools for explainable AI („XAI tools“).

YESNO

YESNO

Is there a more understandable White-Box-Model  
that works comparably well for the use case?

Do you use image data?Do you already have experience 
in using XAI tools?

Do you use neural networks? Do the explanations need  
to be generated quickly?

Should the explanations  
be provided with  

the help of examples?

Do you want to use  
a method acknowledged  
as an industry standard?

Do you use image data (or data 
with high dimensionality)?

Do you use image data (or data 
with high dimensionality)?

Do the explanations have to be  
be generated quickly?
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1 INTRODUCTION

Today, artificial intelligence (AI) applications are mostly 
based on algorithms, processes and models that are 
multi-layered and intertwined. As a result, the deci-
sion-making process of AI-systems is in many cases 
no longer comprehensible to humans - including the 
developers of AI.

While in some areas of application, such as product 
recommendations in the entertainment sector, these 
circumstances are not perceived as problematic, 
comprehensibility can be very decisive elsewhere when 
it comes to using AI products in practice: On the one 
hand, whenever a certain 
degree of “explainability” 
of algorithmic systems is 
indispensable for regula-
tory authorities, e.g. in the 
healthcare industry. On the 
other hand, if the the target 
customers do not accept 
the AI product without a 
minimum of explainability, 
for example in automated 
securities trading.

In Germany and Europe, the 
extent to which explainabil-
ity is required for individual 
approval or certification of 
AI-supported systems is not yet conclusively clarified in 
many application sectors - which is a barrier to innova-
tion for companies with these target markets. In view 
of the forecast sales of AI-based services and prod-
ucts of 488 billion euros for 2025 (eco - Verband der 
Internetwirtschaft e.V. 2019), this is also of economic 
relevance. The European Commission, which is pursu-
ing a “risk-based approach” with regard to a future legal 
framework for AI, takes the view that legal explainability 
requirements should primarily depend on the criticality 
of the application (European Commission 2020). How-
ever, a concrete definition of what exactly characterises 
AI systems with high risk potential and what degree of 
explainability is appropriate is still pending on the part 
of the EU Commission (Remark: the editiorial deadline 
of the original study predated the proposal of the EU 
commission for a regulatory framework on AI published 
on april 21st 2021). 

If possible errors in an AI system are associated with 
potentially serious or fatal consequences for the life 
and limb of persons, such as in the health sector, then 
a “certain” level of explainability must in fact already be 
ensured today in order to meet the basic requirements 
for the approval of AI-supported products. However, 
in this respect, much is left to the discretion of the 
authorising authorities, as no clear requirements for 
explainability can be derived from the laws to date. The 
Medical Devices Ordinance formulates requirements for 
“risk management”, for example, but at the same time 
does not specify what this means in concrete terms 

in terms of explainability. 
In the health sector and 
in many other application 
sectors, e.g. in autonomous 
driving and in the financial 
economy, there is currently 
a great need for concreti-
sation which, on the one 
hand, should be formulated 
in a technology-neutral 
way and, on the other hand, 
must clarify open questions 
with regard to learning 
systems.

For less critical AI applica-
tions, such as music or film 

recommendations on entertainment platforms, there 
are no regulatory requirements regarding explainability. 
Here, the acceptance of the customers alone is deci-
sive. However, end users also increasingly demand a 
certain degree of comprehensibility - even if so far less 
in the consumer sector than in the B2B1 segment. The 
need for explainable AI on the company side becomes 
most apparent when incorrect decisions by AI systems 
might cause potentially high economic damage (as e.g. 
in the maintenance planning of expensive machines 
or systems). In the European or German consumer 
market, a medium- to long-term increase in demand for 
explainable AI is also conceivable in principle. Corre-
sponding technical progress in combination with the 
fact that the General Data Protection Regulation has 

1 “Business-to-business” means business relationships between two or 
more Company

In Germany and Europe, the extent 
to which explainability is required 

for individual approval or certification 
of AI-supported systems is not yet 

conclusively clarified in many  
application sectors - which is a 

barrier to innovation for companies 
with these target markets. 



111 | INTRODUCTION

enshrined  transparency obligations in law, can change 
or strengthen citizen awareness in this regard. This 
study was conducted by the accompanying research 
for the innovation competition “Artificial Intelligence 
as a Driver for Economically Relevant Ecosystems” 
(AI Innovation Competition) on behalf of the Federal 
Ministry for Economic Affairs and Climate Action. The 
study is aimed at providers and developers of systems 
who would like to provide products based on AI and are 
currently faced with the question of what requirements 
exist for the explainability of a system and how these 
can be addressed.

The goals of the study is to classify and to define 
explainable AI, as well as to provide the advantages and 
disadvantages of established explanatory strategies. 
Furthermore, it is the aim to analyse the current use of 
explainable AI in business and science and to illustrate 
this based on practical use cases. Finally, we aim to pro-
vide an orientation guide for the selection of explanatory 
strategies and to identify the challenges and needs for 
action for the realization of explainable AI.

Methodology of the study
The study is based on a survey of 209 representatives 
from business and science with a connection to the 
topic of artificial intelligence, a series of interviews with 
experts, and an extensive literature search. The partici-
pants were recruited from the ranks of the members of 
the German KI-Bundesverband e.V. and from the projects 
of the BMWK technology programmes KI-Innovation-
swettbewerb, Smarte Datenwirtschaft, PAiCE and Smart 
Service Welten.

A total of 209 people took part in the survey, which was 
implemented as an online multiple-choice questionnaire, 
from July to October 2020 (72 percent company em-
ployees, 26 percent representatives from academia and 
two percent “others”). Of the company representatives, 
70 percent classified themselves as small or medi-
um-sized enterprises (SMEs, with no more than 250 em-
ployees) and 30 percent as large companies. 77 percent 
described themselves as AI providers or developers. 
Around 23 percent stated that they were AI users or AI 
users.

Manufacturing  

Process industries 

Health

Media

Finance

Other

Food

Tourism

0 % 10 % 20 % 30 % 40 % 50 %

In
du

st
ry

Percentage of respondents

Figure 2 - Allocation of participants by target and application industries; n=209
* Some industries or fields of activity that could not be selected in the questionnaire, e.g. IT/software or public administration, were indicated by several persons as application 
industries and classified in the figure under „Other“.

Services

Logistics and transport

Trade

Energy and environment 

Construction

Smart home/Smart living 

Agriculture

Allocation of participants according to target and application industries (multiple answers were possible)*.
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Several questions in the survey were asked in direct 
relation to the target or application industries indicated 
by the participants (see Figure 2). This approach was 
chosen to make the reference frame for the assess-
ments clear for the respondents. Respectively, only 
assessments by people with domain insight are taken 
into account for the resulting comparisons among 
industries. For industries that only a small minority of 
participants indicated as their field of application, the 
corresponding results must be considered less reliable 
due to the greater influence of individual opinions.

The interviews with the experts were conducted from 
November 2020 to February 2021. The interview part-
ners all have a professional connection to artificial intelli-
gence and cover the areas of research, business, stand-
ardization and licensing. In individual conversations via 
web conference, guideline-based open interviews were 
conducted with the experts on the topics “technical im-
plementation of explainable AI”, “established explanatory 
tools” and “technical and regulatory challenges”.

Overview of the study
The study is structured as follows:

• The most important concepts from the relevant liter-
ature are compiled in order to facilitate access to the 
professional discourse. Chapter 2 defines the central 
concepts such as transparency, white-box and black-
box models as well as decision and model explana-
tions and, respectively, local and global explainability.

• The established explanatory strategies and tools that 
represent the state of the art are presented in Chapter 
3 and discussed in terms of their potential applica-
tions and practical benefit.

• Important fields of usage in terms of application 
industries, model and process categories, target 
groups as well as data types and implementation 
possibilities were identified in the course of the 
survey conducted. The results are presented and 
discussed in chapter 4.

• Based on four use cases from the healthcare sector 
(image analysis of histological tissue sections, text 
analysis of medical reports), manufacturing (machine 
condition monitoring) and process industry (process 
control), overarching goals and concrete explaina-
bility requirements from the perspective of relevant 
target groups are identified, compared with each 
other and corresponding solutions are described. The 
use cases are described in chapter 5.

• In the course of the expert interviews, advantages 
and disadvantages as well as fields of application of 
established explanatory strategies and tools were dis-
cussed. From this, a compact orientation guide was 
generated in the form of a decision tree, which can be 
found in Chapter 6.

• Essential technical and regulatory challenges and 
needs for action for the realization of explainable 
AI systems were identified in the context of guide-
line-based interviews with experts and discussed in 
Chapter 7.
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2 EXPLAINABILITY OF ARTIFICIAL INTELLIGENCE:
OBJECTIVES, CLASSIFICATION AND CONCEPTS

2.1 Overarching goals and 
 classification of explainable artificial 
intelligence
The motivation for the development and implementa-
tion of explainable AI differs depending on the use case 
and the interests of the target groups of explainable AI. 
Nevertheless, overarching goals of explainable AI can be 
formulated - based on (Arrieta et al. 2019) - and pursued 
either individually or in combination:

1. Check plausibility of causal relationships: With 
explainable AI, patterns discovered by AI should be 
additionally tested for their validity and plausibility. A 
frequent motivation of users is “finding” or mapping 
causal relationships.

2. Test transferability: AI models are usually trained to 
solve a specific task, e.g. “find all pictures with a cat”. 
Explainability should help to estimate the transfera-
bility of the found solution to new tasks (e.g. “find all 
dogs”). This helps to determine the scope and limits 
of an AI.

3. Increase information gain: In order to be able to 
use an AI system at all (e.g., as a decision support 
system), information about the basics of the deci-
sion-making process should be provided in an under-
standable and simple, but not oversimplified, form.

4. Determine confidence: The AI system should be 
checked for robustness (preservation of the system’s 
goodness-of-fit criteria when assumptions are not 
met or statistical outliers play a role), stability (similar 
data yield similar results), or reproducibility (same 
result when run multiple times) to identify vulnerabili-
ties and areas of validity.

5. Fairness testing: With this goal in mind, explainable 
AI will be used to test a model for fairness, specifi-
cally to detect any biases (i.e., systematic errors) that 
may exist in the database.

6. Improve interaction possibilities: Explainable AI 
should support users - especially those with little 
AI expertise - to interact directly with the AI system, 
for example to improve its decision-making or the 
comprehensibility of explanations, e.g. by providing 
alternative explanations (summary of “interactivity” 
and “accessibility” from (Arrieta et al. 2019)).

7. Increase privacy awareness: Potentially, explainable 
AI can provide users with insight into the data collect-
ed and stored, leading to an increased awareness of 
privacy aspects.

8. Clarify responsibilities: Explainable AI can be used 
to clarify responsibilities and liability issues. For 
example, it could be established via a court-appoint-
ed expert that large amounts of biased data have 
been deliberately introduced into a system in order to 
influence it.

An additional goal that is also frequently formulated as 
a motivation in the literature (Ribeiro et al. 2016; Arrieta 
et al. 2019) is the establishment of trust or trustwor-
thiness, which, however, is no longer seen only as an 
overarching goal of explainability, but as a general devel-
opment goal of AI systems.

According to the European Union’s High-Level Expert 
Group on AI guidelines for trustworthy AI (High-Level 
Expert Group on AI 2019), explainability per se helps to 
establish trust. The seven pillars that should support 
trust in AI are:

1.  Human agency and oversight

2. Technical robustness and safety

3. Privacy and data governance

4. Transparency (e.g. traceability, explainability and 
communication)

5. Diversity, non-discrimination and fairness

6.  Social and environmental well-being

7. Accountability
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In the context of the seven pillars, “transparency” refers 
to the property of an AI to have a traceable and, above 
all, explainable decision-making process, which is com-
municated to the user via appropriate information.

At the same time, the mechanisms of action within the 
seven pillars are not entirely independent of each other. 
If explainability (as one of the core aspects of “transpar-
ency”) is given, then this also has a direct effect on the 
points 1, 2 and 5 from above:

• For example, if AI systems are vulnerable to data 
bias1 in real-world data, transparency and explain-
ability in (semi-) autonomous systems can greatly 
facilitate human oversight. Also, in decision support 
systems, the risk of decisions being made without 
adequate human review can at least be reduced if a 
certain degree of explainability is inherent.

1 Here and in the following, the term “data bias” or “bias” refers to to an ap-
plication-neutral and statistics-related understanding of the expression, 
i.e. a general systematic deviation is meant.

• From a developer’s perspective, the vulnerability 
of systems to data bias can be better addressed if 
transparency is ensured, which will also improve the 
technical robustness and saftety of the systems.

• Transparency is also a prerequisite to enable equal 
treatment of individuals and to identify potentially 
discriminatory decisions of algorithmic systems 
(non-discrimination and fairness2).

Explainability is also an important aspect that can con-
tribute to the acceptance of AI. Basically, the acceptance 
of a technology is determined by its voluntary, active 
and targeted use.

To date, there is no generally accepted, and conse-
quently no uniform, taxonomy for explainable artificial 
intelligence, which is why the following section will go 
into more detail about which concepts and terminology 
are used as the basis for the study.

2 Nevertheless, testing fairness is almost always a challenge, especially 
because of the difficulty of selecting appropriate metrics.
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2.2 Basic concepts of explainable 
artificial intelligence
Despite sometimes conflicting labels, there is wide-
spread consensus (Lipton 2016; Gilpin et al. 2018; 
Arrieta et al. 2019) on the basic distinction between two 
concepts, namely.

• Transparency3 
• and explainability (mostly in the form of post hoc 

explainability).

The terminology in this study is based on (Arrieta et al. 
2019), and the presentation is inspired by (Lipton 2016).

If an AI model is transparent - whereby transparency is 
to be understood explicitly as a property here - it can 
also be referred to as a “white-box” model, provided 
that the input data 
are comprehensible. 
With such models, in 
particular the algorith-
mic mechanisms for 
generating the model 
are comprehensible. 
A detailed definition of 
transparency follows in 
section 2.2.1.

Explainability, on the 
other hand, is about ac-
tively providing a target 
person with an under-
standable rationale that 
allows them to compre-
hend the outcome of an 
AI model.

The perception and the the level of knowledge of the 
target person, but also the orientation of the question, 
must necessarily be taken into account when creating 
explanations. A detailed definition follows in section 
2.2.2.

3 Here, the term transparency refers to a different concept than what was 
previously referenced in the Guidelines for Trusted Artificial Intelligence 
(High-Level Expert Group on AI 2019).

2.2.1 Transparency

Transparency is treated as a model property in the 
following. If the transparency of a model is given, it is 
self-explanatory under the assumption of comprehen-
sible input variables4. The property of transparency can 
be further subdivided into the three different manifes-
tations of “simulability”, “decomposability” and “algo-
rithmic transparency” (Lipton 2016). Here, hierarchical 
dependence is often assumed in the literature (Arrieta et 
al. 2019), such that the simulability of a system implies 
its decomposability and its algorithmic transparency. 
Correspondingly, the decomposability of a system also 
establishes its algorithmic transparency. Consequently, 
assuming explainable input data, a model is already 
considered transparent if it only satisfies the property of 
algorithmic transparency. A model reaches the highest 
level of transparency if it satisfies the property of simu-

lability and thus also fulfills the 
two other properties.

A system is simulatable if even 
a person can or could reproduce 
the decisions of the underly-
ing algorithm in a reasonable 
amount of time by manually 
performing the individual steps 
required to bring about a deci-
sion.

Example: When manually 
traversing different paths of 
a not too large decision tree 
based on comprehensible 
input variables, a person can 
check for himself in each node, 
whether an individual property 

of input data or an attribute is satisfied or not. If there 
are no more attributes to check, the person has reached 
a “leaf” of the decision tree, which represents the result. 

4 In this context, the literature also frequently refers to “interpretable” mod-
els. However, this term has been avoided here because “interpretability” is 
often used contradictorily in the relevant literature.

If an AI model is transparent, it can 
also be referred to as a “white-box” 
model, provided that the input data 
are comprehensible. Explainability, 
on the other hand, is about actively 
providing a target person with an 

understandable rationale that allows 
them to comprehend the outcome  

of an AI model.
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In a decomposable system, the individual components 
(input data, parameters, model levels, calculations, etc.) 
can or could be provided with an intuitive description so 
that their functions in the overall system can be closely 
understood.

Example: In decision trees, it is specified for each node 
which attribute is currently being tested and which 
characteristic is required in each case for the selection 
of the following subpaths. Individual model levels can 
be characterized by the description of the nodes they 
contain. The intuitive description and comprehensibility 
of the input variables must be ensured during system 
design in order to be able to describe a decision tree as 
decomposable, i.e. the input variables themselves must 
not be opaque constructs consisting of many variables.

Algorithmic transparency refers to the actual learning 
process or the generation of models. What matters here 
is whether it is possible to understand how a model is 
generated in detail and how, during the training phase, 
possible situations are dealt with that the algorithm in 
question might be confronted with (in terms of unknown 
input or training data). In this context, algorithmic trans-
parency is really only about the properties of the algo-
rithm and not about concrete model features or data.

Example: In the case of linear regression, in which a 
linear model is fitted to a point cloud consisting of  
measured values, e.g. by means of the method of least 
squares (standard mathematical procedure for regres-

sion analysis), it is possible to understand in detail how 
the unique result is determined. With certain assump-
tions about statistical distributions, additional statistical 
statements can be made about the determined result. In 
any case, the resulting linear model is always unambig-
uous, the convergence is reliable and the limits are well 
known (e.g. susceptibility of the classical least squares 
method to statistical outliers).

The example of the decision tree and the linear regres-
sion model shows that these AI models fulfill basic 
transparency properties. For other model types, this is 
not the case even for small-dimension model instances 
still usable for practical applications. For example, in 
order to consider neural networks in image processing 
decomposable, the function of each individual node and 
each individual layer in the network would have to be 
clearly describable and referable to the result. In such a 
system, one node might be “responsible” for detecting 
horizontal lines in the image, another might detect verti-
cal lines, etc. This description would have to be available 
for the whole network, so that deeper layers based on 
the results of the previous ones could also be explained. 
Therefore, the property of decomposability does not 
seem to be satisfiable for neural networks. Accordingly, 
the interconnectedness and multilayeredness that usu-
ally characterize neural networks also have the effect 
that model variants of neural networks - according to 
the above definition - are not considered simulatable. 
In the literature, the lack of algorithmic transparency 
of neural networks is often attributed to the fact that 
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common training methods for unknown input or training 
data usually do not lead to unique solutions (Lipton 
2016). This is because the error or loss surfaces of the 
loss function are usually difficult to analyze given the 
problem structure (Arrieta et al. 2019; Kawaguchi 2016; 
Datta et al. 2016) and solutions can only be approximat-
ed using heuristic optimization methods (Arrieta et al. 
2019). According to (Arrieta et al. 2019), in general, the 
accessibility of a model to appropriate mathematical 
analyses and methods is the key criterion for the algo-
rithmic transparency of a model.

A discussion of the transparency properties of other 
models in terms of algorithmic transparency, simulabil-
ity, and decomposability can be found in (Arrieta et al. 
2019).

 

2.2.2 Explainability

Since the aforementioned transparency is not achieva-
ble for various models such as neural networks, which 
are consequently not self-explanatory, the alternative 
concept of “explainability” is applied to them when nec-
essary. In this context, it is normally specified whether 
the explainability concerns a particular decision or a 
model as a whole. On the other hand, no general rule 
can be derived as to how a concrete explanation should 
be designed and how much knowledge it conveys to the 
target person. In the example of image processing with 
neural networks, one already speaks of an explanation 
of a decision when certain areas in the input image, 
which were most significant for the classification of an 
image, are highlighted in color for the target person. In 
this case, not every single step of the algorithm is ex-
plained, but the target person is pointed to the data that 
was most significant for the individual decision. Alter-
natively, an explanation can be represented by a textual 
description, e.g. “This picture shows a dog, because four 
legs, a snout, fur and a tail were recognized.”

AI Model Transparency White box/
Black box

Post-hoc 
analysis  

necessary?Simulata-
bility

Decompos-
ability

Algorithmic 
transparency

Neural networks X X X Black box
Necessary:  

Tools in chapter 3
Ensemble models  
(e.g. Tree Ensembles) 

X X X Black box
Necessary:  

Tools in chapter 3

Support vector machines X X X Black box
Necessary:   

Tools in chapter 3

Bayesian networks (  ) (  ) White box* Not necessary 

Linear/logistic  
regression Models (  ) (  ) White box* Not necessary

Decision trees (  ) (  ) White box* Not necessary

Table 1: Overview of white-box/black-box nature of models used for machine learning (based on (Arrieta et al. 2019)).
* Applies in the case of comprehensible input parameters and generally in the case of decomposability.

Overview of white-box/black-box nature of models used for machine learning.
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Basically, there are two types of explanations: 

• Explanations of individual decisions or decision 
explanations that help to concretely trace individual, 
data-related decisions (so-called local explainability 
or data explainability).

• Explanations of models or model explanations that 
help to understand the interdependencies of AI mod-
els (so-called global explainability or model explain-
ability), e.g. linear or general functional relationships 
between input and output variables.

It is a “post hoc” explanation when an appropriate ana-
lytical tool is applied “retrospectively” to generate an ex-
planation - i.e. after an individual decision making (in the 
case of decision explanations) or after model training (in 
the case of model explanations). Post hoc explanations 
can theoretically be generated regardless of whether the 
model is transparent or ‘opaque’ - at least if the analysis 
tool used is suitably flexible. Normally, however, such 
explanations are only required in order to establish a 
certain degree of comprehensibility for opaque models 
(“black box”).

2.2.3 White-Box and Black-Box Models

Based on the presented paradigm of transparency, mod-
els can be assigned to the class of black-box models if 
none of the three properties - simulatability, decompos-
ability or algorithmic transparency - are fulfilled. Con-
versely, models that satisfy at least the lowest of those 
three transparency levels (algorithmic transparency) and 
use comprehensible input variables will be referred to in 
the following as white-box models.

An overview of whether the currently frequently used 
AI models fulfill the properties of simulatability, decom-
posability and algorithmic transparency, and thus can 
be considered white or black box accordingly under 

the assumption of comprehensible input variables, can 
be found in Table 1. The classification of the individual 
models essentially follows the concept of (Arrieta et al. 
2019).

It can be seen that the division into white-box and black-
box models succeeds very well with the help of the 
transparency levels. Although each nominal white-box 
model can potentially lose the two properties of simu-
lability and decomposability e.g. when its dimension is 
too high and thus the meaning of certain model layers 
or variables cannot be assigned intuitively anymore, 
the algorithmic transparency is maintained in any case. 
This distinguishes white-box models crucially from their 
black-box counterparts, which do not satisfy any of the 
three properties even for small-dimension models that 
are still of actual practical use in applications. Bayesian 
networks are an interesting special case. This class of 
models has the advantage that statistical information 
about training data (e.g. “density” of training data in the 
data space) can be taken into account when computing 
confidence values. This means that Bayesian networks 
not only provide the decision itself, but also provide 
quantitative statements, e.g. about how likely the occur-
rence of an event is. This property is also maintained if 
the requirements for simulability and decomposability 
are not met.

In contrast to self-explanatory white-box models, black-
box models - for example, neural networks - require the 
use of an additional strategy to make the model com-
prehensible or to explain it. This is a “post hoc” analysis, 
when an appropriate explanatory tool is applied to the 
AI model in retrospect, i.e., after the decision has been 
made or the AI model has been trained. In the following 
chapter, various explanatory strategies are presented, 
most of which can be referred to as post hoc analysis 
tools. Other approaches discussed add certain compo-
nents to the AI models themselves that allow explana-
tions to be extracted from the extended models.  
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3 ADVANTAGES AND DISADVANTAGES OF 
 ESTABLISHED STRATEGIES AND TOOLS FOR 
 EXPLAINABLE AI
With regard to explanatory strategies, a distinction can 
be made between approaches that provide “model 
explanations” and approaches that provide “decision 
explanations”. A model explanation provides information 
about the concrete functioning of the model. A decision 
explanation provides reasons that led to a single decision 
of the AI model. An AI model can be self-explanatory per 
se (white box) or - often due to appropriate extensions 
of black-box models - generate explanations simultane-
ously with the decision. Alternatively, explanations can 
be provided after the decision (post hoc) by an additional 
(post hoc) analysis tool. The latter approach specifically 
addresses black-box models and the improvement of 
their comprehensibility.

White-box models - for example linear and logistic 
regression models, decision trees or Bayes nets - are 
self-explanatory in terms of model-action mechanisms 
(due to their directly comprehensible functioning) and 
with regard to their deci-
sions. Consequently, the 
white-box model can be 
used for the concrete 
task (e.g. classification, 
regression or clustering) 
as well as for providing 
explanations.

The explanatory 
strategies presented 
below are only a limited 
selection; many more 
methods are used and 
discussed in research 
and practice. The selec-
tion includes the ten

explanatory tools 
whose associated 
first scientific publica-
tion has at least 500 
citations according to 
Google Scholar (as of December 2020), as well as es-
tablished methods that were additionally named by the 
experts during the interviews. For each explanatory strat-
egy presented here, a brief discussion is provided that 
includes an easy-to-understand example, a brief descrip-
tion of the technical background, important advantages 
and disadvantages, and references to further reading.

3.1 Integration of prototypes
Explanation Type:
Decision explanations; a model provides both a decision 
and an explanation

Applicable to:
all models, independent of their concrete implementa-
tion (but with focus on classification problems); image 
and text data as well as numerical data

Example:
An AI model is designed to assign patients to a clinical 
picture on the basis of their symptoms. For each clinical 
picture, e.g. cold, flu or pneumonia, a prototype is created.

This prototype functions as a kind of fact sheet that 
summarizes the most common symptoms. The proto-
types can be created on the basis of the symptoms of 

many different patients suf-
fering from the corresponding 
disease. For each patient to 
be classified, a profile is also 
created containing the symp-
toms, e.g. cough, fever and cold. 
This is then compared with the 
representations of the individual 
classes (clinical pictures) and 
the most similar one is selected.

Technical background: 
Using prototypes is about creat-
ing representations of individual 
classes. These representations 
can be, for example, data points 
from the training base that 
describe the respective class 
well or artificially generated 
representations that include the 
characteristic features for the 
respective class. These artificial 
representations can be gen-

erated using generative networks such as Generative 
Adversarial Networks or Variational Auto-encoders. It 
is also possible that a class is characterized by several 
prototypes. To provide an explanation, the most similar 
prototype must be found for a classification result. For 

With regard to explanatory 
 strategies, a distinction can be 
made between approaches that 

provide “model explanations” and 
approaches that provide “decision 

explanations”. A model  explanation 
provides information about the 

 concrete functioning of the model.  
A decision explanation provides 

 reasons that lead to a single 
 decision of the AI model.
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this purpose, for example, a K-Nearest-Neighbor search5 
can be used. Finally, the user can compare the prototype 
used for the concrete class as well as the data values 
entered and thus understand on which basis, i.e. accord-
ing to which similarities, the decision was made by the 
AI model.

Pros:
• Number of prototypes can be freely selected
• Intuitive and easy to understand
• Independent of AI model and data types

Cons:
• Number of prototypes needed may be unclear
• For artificially created prototypes: may not be  

 realistic

(Molnar 2019; Barbalau et al. 2020; Li et al. 2017)

3.2 Integration of external knowledge 
bases
Explanation Type:
Decision explanations; a model provides both the deci-
sion and the explanation

Applicable to:
All models, independent of their concrete implementa-
tion (focus on classification problems); text data only 
(knowledge base required)

Example:
The PubMed database contains numerous medical arti-
cles that describe, among other things, specific diseases 
and their symptoms. By using this knowledge base, an 
AI model can learn the relationships between symp-
toms and diseases. If the model is then confronted with 
symptoms from patients, such as a severe swelling and 
a blood clot, the model can then use this knowledge to 
learn the correlations between symptoms and diseases. 
If the patient has ankle effusion and pain on exertion, the 
result of the model could be “suspected ligament rupture”. 
At the same time, a reference is made to one or more 
articles from PubMed in which precisely these symptoms 
and the derivation of the corresponding clinical picture 
are described and clearly highlighted for the user.

5 K-Nearest-Neighbor is a method to assign similar further data points to a 
given data point. The similarity can be determined in different ways.

Technical Background:
In this approach, the AI model (e.g. neural networks) is 
combined with external knowledge bases. The knowl-
edge base is already used during the training of the 
AI model to create the model. Knowledge bases can 
be, for example, online publications on a certain topic, 
reference books or Wiki-pedia. The goal here is to learn 
correlations from the knowledge bases and to be able 
to justify decisions made by the AI model with concrete 
entries in the knowledge base. 

Pros:
• Easily comprehensible: Reliability of the publications 

on which the decisions are based can be easily 
checked

• Combination of several knowledge bases possible

Cons:
• Depending on the quality (and existence) of the 

knowledge base
• Independent development of a qualitative knowledge 

base is very time-consuming

(van Aken et al. 2021; Holzinger et al. 2017)

3.3 Surrogate models (substitute 
models)
Explanation Type:
Related to the original model, neither model nor decision 
explanations, as a new model is created; post hoc

Applicable to:
All models, regardless of their concrete implementation; 
image and text data as well as numerical data

Example:
An AI model that is not easy to understand is trained, 
e.g. a Support Vector Machine, to forecast the daily 
rental figures for winter sports equipment. Many factors 
flow into the model, such as the time of year, the weath-
er report, the times of the school holidays and the day of 
the week. Now a simpler model, such as a decision tree, 
is trained, whose decisions are more comprehensible, 
but which cannot represent the complete complexity of 
the original model. Thus, the forecasts of the second 
model are often less accurate, but generally valid regu-
larities can be derived, such as: “Fewer skis are rented 
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when it is foggy” or “The number of rentals is significant-
ly lower on Mondays than on Sundays”.

Technical Background:
Surrogate model building is about building a second 
model, such as a linear model or decision tree, that 
is more tractable than the original black box model 
and can thus be used to explain the decision-making. 
Building on the inputs and outputs of the original model, 
the prediction function of the surrogate model is de-
rived. Thus, rules can be extracted from trained neural 
networks and comprehensible decision trees can be 
created based on them, for example with the algorithm 
TREPAN (Touretzky 1996). Especially for image data, 
the creation of such trees is not trivial.

Pros:
• Very flexible: original and surrogate model can be 

freely selected

Cons:
• Only approximation: representativeness of the surro-

gate model difficult to measure
• Surrogate model itself can become very complex 

and less comprehensible
• Not easily applicable to image data

(Adadi und Berrada 2018; Danilevsky et al. 2020; Molnar 
2019)

3.4 Counterfactual Explanations
Explanation Type:
Decision explanations; Post hoc

Applicable to:
All models, regardless of their concrete implementation; 
image and text data as well as numerical data

Example:
When reviewing applications for a rental apartment, the 
interested parties are evaluated with regard to several 
criteria and the most suitable prospective tenant is se-
lected. For example, the three factors income, pet own-
ership and credit rating are considered here. If the AI 
system now rejects a prospective tenant with an annual 
income of 40,000 euros, no pets and a positive credit 
report, a possible explanation would be: With an income 
of 45,000 euros, the applicant is eligible for a rental. In 
the same way, the concept can be used in case of a pos-

itive decision. Exemplary explanations would be: “If the 
applicant had a cat, he/she would not be considered as 
a potential tenant” or “If the credit rating was negative, 
he/she would not be able to rent the apartment”.

Technical Background:
Counterfactual Explanations is a concept that aims to 
identify the smallest possible change in the input values 
for a concrete classification result that would lead to a 
classification in a different class. However, there may 
be multiple ways to vary the input values such that the 
classification algorithm arrives at a different result. The 
following four properties characterize good counterfac-
tual explanations:

• The original classification result and the new one 
caused by the change of input values are very similar

• As few features as possible should be changed
• Several different explanations can be helpful
• The changed features should be realistic

Practical implementations do not necessarily address 
all of these characteristics, so it must be checked which 
are most desirable for one’s own use case. For example, 
the implementation by Wachter et al. focuses only on 
the first two properties (Wachter et al. 2017). For this 
purpose, a corresponding loss function is set up, which 
is optimized with respect to one or more objectives.

Pros:
• Well understandable
• No data or access to the inner model structure 

required

Cons:
• Proposed change may not be realistic or even impos-

sible in practice
• Multiple, contradictory explanations possible

(Wachter et al. 2017; Stepin et al. 2021; Molnar 2019)

3.5 LIME (Local Interpretable Mod-
el-Agnostic Explanations)
Explanation Type:
Decision explanations; Post hoc

Applicable to:
All models, regardless of their concrete implementation; 
image and text data as well as numerical data



273 | ADVANTAGES AND DISADVANTAGES OF ESTABLISHED STRATEGIES AND TOOLS FOR EXPLAINABLE AI

Example:
As a concrete example, the probability of death of a 
cancer patient is calculated depending on the age of 
the patient. For a 25-year-old patient, a probability of 45 
percent is assumed as the result of the AI model. Now 
the probability of death is calculated for patients with a 
similar age, for example 24 (44 percent) and 26 years 
(46 percent). Using these three values - in practice more 
are usually used - it is possible to estimate the behaviour 
of the model within a limited range: e.g. a slight (linear) 
increase in the probability of death with increasing age. 
For patients aged 74, 75 and 76, the model may behave 
differently - for example, it may show a much greater 
increase in the probability of death with age. In this way, 
LIME can be used to simplify individual “sections” of 
what is actually a highly interwoven and complex model, 
making it easier for the user to understand (Nguyen 
2020).

Technical Background:
The basic idea of LIME is to learn a locally approximat-
ed, interpretable model for a concrete classification or 
regression result. This allows a concrete result to be 
reproduced using a simpler, often linear model, even 
though the original model is difficult to reproduce. LIME 
“samples” several results (or decisions) and weights 
them according to their proximity to the result to be 
explained. On this basis, a local model can be developed 
that works well with the samples considered and is 
comprehensible.

Pros:
• Intuitive and generally easy to interpret
• Quick and easy integration into existing implementa-

tions (appropriate framework available)

Cons:
• Problematic for distinctly nonlinear models
• Possibly high computing time for multidimensional 

data, e.g. image data
• Hardly reproducible due to data sampling (a classi-

fication performed several times could be explained 
differently)

(Nguyen 2020; Ribeiro et al. 2016)

3.6 SHAP (SHapley Additive exPlana-
tions)
Explanation Type:
Decision explanations; Post hoc

Applicable to:
All models, optimizations exist for individual models 
(e.g. TreeSHAP for random forests); image and text data 
as well as numerical data

Example:
As an example, the prediction of income based on the 
three factors age, gender and occupation will be consid-
ered. The influence of each factor on a concrete result 
of the AI system is determined. In order to find out how 
important age is for the income forecast, a “normal” 
forecast is first calculated taking age, gender and occu-
pation into account. Then, a forecast is made again, but 
using only the two factors of gender and occupation. In 
this way, the difference between the two results - once 
taking age into account, once not taking age into ac-
count - can be calculated afterwards and the influence 
of the factor “age” can be determined. This process is 
repeated for the other two factors (Mazzanti 2020).

Technical Background:
SHAP is an approach from game theory. When apply-
ing the method, each feature or input value is weighted 
with respect to a concrete classification result. These 
weights are also referred to as Shapley Values. The idea 
behind this is that all possible combinations of features 
are considered to determine the importance of an 
individual feature. Each input feature is thus assigned a 
positive or negative value indicating the influence of the 
individual feature on the result. The method can be used 
to generate explanations of decisions. TreeSHAP is a 
variant of SHAP that can be applied particularly efficient-
ly to tree-based models.

Pros:
• Model-agnostic (tailored SHAP implementations 

provide high efficiency)
• Very precise explanations possible
• Considered an industrial standard

Cons:
• Explanations not always intuitive
• Possibly high computing times (especially for mod-

els with a high number of parameters)

(Molnar 2019; Lundberg und Lee 2017; Mangalathu et al. 
2020; Mazzanti 2020; Bhatt et al. 2019)
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3.7 Attribution Methods
With the help of so-called attribution methods, the 
negative or positive influence of parts or areas of the 
input of an AI model on its output is considered (Sund-
ararajan et al. 2017). The following concrete methods 
can be assigned to this group: Sensitivity Analysis, LRP, 
DeepLIFT, Integrated Gradients, Grad-CAM, Guided 
Backpropagation and Deconvolution. A common exam-
ple is used to explain how they work. The differences 
are described in the following technical details.

Example:
Image classification is about identifying image are-
as that are crucial for the classification result. As an 
example, objects on an image are to be recognized with 
the help of a neural network. The two possible classes 
are “cat” or “dog”. After the AI model has delivered a 
decision, e.g. “cat”, the influence of individual pixels and 
image areas on the concrete decision is examined. For 
this purpose, the individual components of the neural 
network - units and layers - are considered in order to 
“map” the outputs to the input image. The result is a so-
called saliency map, in which the pixels and image areas 
that had a particularly large influence on the animal 
being recognized as a cat are highlighted.  

3.7.1 CAM / Grad-CAM / Grad-CAM++ (Gradi-
ent-weighted Class Activation Mapping)

Explanation Type: 
Decision explanations; Post hoc

Applicable to:
Neural networks, especially Convolutional Neural Net-
works (CAM may require the addition of special layers); 
image data

Technical Background:
CAM is a method for visualizing crucial regions for a 
concrete classification result of a neural network, in par-
ticular Convolutional Neural Network (CNN). The result 
is a saliency map that can be overlaid on the original 
image to highlight the regions of interest. To create the 
saliency map, only the last layers of the network are 
considered at a time. CAM is not directly applicable to 
every network architecture; it may need to be adjusted 
by adding more layers beforehand and then re-training 
the network.

Grad-CAM is a generalization of the CAM method, does 
not require re-training of the model, and is applicable to 

more network architectures. However, one drawback of 
Grad-CAM is that it cannot detect multiple occurrences 
of an object in an image. Grad-CAM++ solves this prob-
lem, allowing the detection of multiple object instances 
in one image.

Pros:
• Visualizations correlate with human attention  

 easily understandable
• Good results in tasks where image objects have to 

be localizedGute Ergebnisse bei Aufgaben, in denen 
Bildobjekte lokalisiert werden müssen

Cons:
• Visualizations often too rough for small image 

objects  only rough validation (quality strongly 
depends on concrete application)

• CAM: additional layers must be trained

(Zhou et al. 2015; Selvaraju et al. 2019; Chattopadhyay et 
al. 2017)

3.7.2 LRP (Layer-Wise Relevance Propagation)

Explanation Type:
Decision explanations; Post hoc

Applicable to:
Neural networks; focus on image data

Technical Background:
LRP considers the influence of individual inputs on the 
result of a classification. The focus here is on non-linear 
classifiers such as neural networks. Considering image 
classification, the goal is to find out for individual images 
which pixels positively or negatively influence the classi-
fication result and to what extent. Each input value (here: 
pixel) is assigned a relevance value. The ‘relevance’ value 
indicates how much influence an input value or a unit of 
the network has on the classification result. The rele-
vance value of the output is the sum of the relevance val-
ues of the input values. The output value of the network 
is thus ‘decomposed’ into the respective contributions (or 
the influence) of the input values. The calculation of the 
relevance of the input values is performed iteratively from 
the back (last layer) to the front (input layer).

Pros:
• Good quality of explanations even for multilayer 

models with a high number of parameters
• Declarations can be generated very quickly (in rela-

tion to the runtime)



293 | ADVANTAGES AND DISADVANTAGES OF ESTABLISHED STRATEGIES AND TOOLS FOR EXPLAINABLE AI

Cons: 
• Numerical problems with decomposition possible 

 possibly misleading visualizations

(Bach et al.; Samek et al. 2019; Shiebler 2017)

3.7.3 IG (Integrated Gradients)

Explanation Type:
Decision explanations; Post hoc

Applicable to:
Neural networks; image and text data and numerical 
data

Technical Background:
This method is also intended to improve the explain-
ability of neural networks through visualization. One 
advantage is that the structure of the network does not 
need to be changed, as may be the case with CAM. In 
the exemplary case of image data, when IG is used, an 
image is chosen as the baseline, such as a completely 
black image. A series of interpolated images are then 
created ‘between’ the baseline and the original input, 
each with little difference between them. On this basis, 
individual gradients are calculated, which in turn are 
used to identify interesting areas - i.e. decisive for the 
classification - in the input image.

Pros:
• Scales well for image processing
• Positive and negative influence of individual input 

values can be displayed separately
• Usage of a baseline: intuitive approach
• Considered an industrial standard

Cons:
• Correct choice of baseline unclear  widely vary-

ing results
• Explanations not always intuitive

(Sundararajan et al. 2017; Bhatt et al. 2019; Google 
2020)

3.7.4 DeepLIFT (Deep Learning Important 
FeaTures)

Explanation Type:
Decision explanations; Post hoc

Applicable to:
Neural networks; focus on image data

Technical Background:
DeepLIFT is an explanatory tool that is used to improve 
the comprehensibility of neural networks. The method 
assigns a score to individual units of the neural network 
in relation to a concrete output (classification or regres-
sion result). As with the Integrated Gradients method, a 
baseline is used: A neutral input is chosen (depending 
on the concrete use case) for which the activations 
of the individual units or neurons of the network are 
calculated. Thus, reference values are determined. Then 
the deviation - the ‘score’ - from these reference values 
is calculated for a concrete input per unit. The choice 
of the neutral input is critical and should be made using 
domain knowledge. In some cases, it makes sense to 
determine several neutral inputs and to calculate the 
individual scores based on several values.

Pros:
• Positive and negative influence of individual input 

values can be displayed separately
• Use baseline: intuitive approach
• Enables fast approximation for integrated gradients

Cons: 
• Correct choice of baseline unclear  widely vary-

ing results

(Shrikumar et al. 2016; Shrikumar et al. 2017; Salehi 
2020)

3.7.5 Guided Backpropagation und Deconvolu-
tion / DeconvNet

Explanation Type:
Decision explanations; Post hoc

Applicable to:
Neural networks, in particular convolutional neural net-
works; image data

Technical Background:
With Guided Backpropagation or DeconvNet (Decon-vo-
lution), important features of the input as well as individ-
ual layers of a neural network can be visualized. In both 
methods, the activation values of the individual units 
are mapped back to the respective input by the neural 
network in order to identify the input values that are de-
cisive for a concrete classification with a saliency map. 
The same components are used as in a Convolutional 
Neural Network - e.g. pooling - but “in reverse”. The 
process of traversing the network from back to front is 
also called backpropagation. The two methods Guided 
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Backpropagation and Deconvolution or DeconvNet 
differ only in the concrete calculations of the backpropa-
gation steps.

Pros:
• Fast calculation, only one forward and one backward 

pass necessary
• Motivation behind the methods very intuitive
• Guided Backpropagation: “more selective” visualiza-

tions compared to DeconvNet

Cons:
• Strong focus on Convolutional Neural Networks   

less suitable for other architectures

(Springenberg et al. 2014; Zeiler und Fergus 2013; Zeiler 
et al. 2011)

3.7.6 Activation Maximization

Explanation Type:
Model explanations; Post hoc

Applicable to:
Neural networks; focus on image data

Technical Background:
Activation maximization is used to gain knowledge 
about the structures learned by a neural network for 
recognizing different classes. The goal is to find input 
data that lead to a decision of the neural network that 
corresponds to a certain class with the highest possible 
confidence. Subsequently, the “perfect” input generated 
in this way can be checked for plausibility. With respect 
to the entire network, each individual unit can be con-
sidered and the activation of this unit can be maximized 
by a certain input. In this way, individual units and layers 
within the network can be examined and model explana-
tions can be provided.

Pros:
• Explanations can be very fine-grained, e.g. for indi-

vidual layers or units.
• Provides model explanations and insight into how 

the model works

Cons:
• Results are purely qualitative
• Interpretation difficult and very subjective (especially 

for low layers)

(Erhan et al. 2009; Ye 2020)

3.7.7 Sensitivity analysis

Explanation Type:
Decision explanations; Post hoc

Applicable to:
All models, regardless of their concrete implementation; 
image and text data as well as numerical data

Technical Background:
Sensitivity analysis is a concept that is applied across 
disciplines for the analysis of systems. In sensitivity 
analysis, individual input parameter values of a model 
are systematically varied (within the respective permis-
sible range). These systematic variations, also called 
pertubations, can be used to determine which input 
parameters or features have the greatest influence on, 
for example, a classification result. Relevant features 
can be used as the basis for a corresponding explana-
tion. Sensitivity analysis is model-agnostic and provides 
decision explanations in terms of feature importance in 
a very simple way. In one-dimensional sensitivity anal-
ysis, only one input value is varied at a time; in multidi-
mensional variants, the influence of several varied input 
parameters can also be examined simultaneously.

Pros:
• Very fast and simple for differentiable models

Cons:
• Not suitable for non-differentiable models

(Cortez und Embrechts 2011; Baehrens et al. 2009)
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Remark 

Advantages and disadvantages were compiled based 
on the expert interviews, on information provided by the 
Bosch Center for Artificial Intelligence and the following 
additional sources: (Bhatt et al. 2019; Sundararajan et al. 
2017; Google 2020; Gondal et al. 2017; Montavon et al. 
2019; Shrikumar et al. 2017; Tjoa and Guan 2020).  
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4 THE CURRENT USE OF EXPLAINABLE AI IN  
INDUSTRY AND SCIENCE

This chapter presents the results of the survey con-
ducted with representatives from AI-related companies 
and scientific institutions (number of participants: n = 
209). The results reflect the statements of AI developers 
(about 75 percent of respondents) and AI users (about 
25 percent of respondents) with regard to 

• the use of specific data types, AI methods and 
models,

• the explainability of selected AI models,
• industry-specific requirements in terms of explaina-

bility as well as
• concrete target groups and implementation possibili-

ties for explanations.

The explanation strategies presented in the previous 
chapter illustrate that the type of the available data must 
be taken into account for the selection of an appropriate 
tool. Some approaches are particularly suitable for the 
creation of explanations for image data processing AI 
systems, e.g. Grad-CAM or LRP, for other systems text-
based knowledge bases might be needed.

When looking at the types of data that developers and 
users work with most frequently according to the survey 
(see Figure 3), it becomes clear that numerical data, 
image and video data, and text data play a particularly 
important role. Numerical data occupy first place in 
the survey and are used by about three quarters of the 
respondents.

Audio data is used much less frequently. Approximately 
ten percent of the respondents named additional data 
types; these include, for example, 3D, CAD and geodata 
and were summarized for the evaluation in the category 
“Other”.

Under the hypothetical assumption that application 
problems would differ only in terms of data types (and 
application criticality, distribution of AI model use, and 
audience-related needs would not vary), the following 
could be concluded from the survey results. Either ex-
planatory strategies should support different data types, 
or they should be particularly suited to one of these 
common data types. 

In Chapter 3, however, it became clear that the use of 
certain AI models also limits the choice of explanatory 
strategies. For example, some of the approaches dis-
cussed, e.g. Integrated Gradients or DeepLIFT, are only 
applicable to neural networks as the underlying model 
type. Surrogate models or counterfactual explanations 
can be applied to neural networks as well as to other AI 
models.

The survey results on the use of AI models and methods 
show that the neural networks, which are often in the 
foreground in the public and expert debate, are by no 
means the only AI models currently used. Decision trees, 
which are easier to interpret, are used just as frequently. 

Numerical data/time series

Image/video data

Text

Audio data

Other

0 % 10 % 20 % 30 % 40 % 50 % 60 % 70 % 80 % 90 % 100 %
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Percentage of respondents
Figure 3 - Survey results: Numeric data is the most commonly used data type at approximately 75 percent. 
* Some data types that could not be selected in the questionnaire, e.g. 3D, CAD or geodata, were indicated by several persons and classified in the figure under „Other“.

Types of data used by respondents (multiple answers were possible)*.
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Statistical and probabilistic models are currently the 
most widely used category of models. The combination 
or connection of several redundant models (ensemble 
models) is also a frequently used model category for a 
large group of respondents, see Figure 4.

Of the process categories that were available for se-
lection, mathematical optimization approaches are the 
most widespread among the respondents. Methods for 
dimensionality reduction and reinforcement learning 
or dynamic programming are used only slightly less 
frequently. Evolutionary search methods and meta-
heuristics currently are the least popular among the 
considered approaches, but are nevertheless used by 
30 percent of the respondents, which ultimately under-
scores a certain relevance of all method and model cat-
egories that could be selected here by the respondents.

A look into the future shows that the respondents see 
the strongest declining trend in two white-box model 
categories, namely statistical/probabilistic models and 
decision trees.

Since, according to the survey, the importance of 
neural networks will remain unchanged in the future 

(for about 66 percent of respondents), this could mean 
that a black-box model category will represent the most 
important model type in five to ten years. This suggests 
that explanatory strategies will also become increasing-
ly important.

On the other hand, the survey shows that the impor-
tance of reinforcement learning and evolutionary search 
methods and metaheuristics will increase in the future 
according to the participants, and thus “on-the-job” 
learning and non-deterministic methods will be in-
creasingly used. This study only partially deals with the 
“model type” of control policy in the context of a special 
use case (in section 5.2.2 of the following chapter). It 
should therefore only be briefly mentioned here that 
both process categories in this area of application can 
present potential challenges in terms of traceability and 
functional safety, depending on the methodological 
implementation and embedding in higher-level control 
processes. Possible “exploration phases” or non-deter-
ministic modes of operation of autonomous systems 
often represent an exclusion criterion for approval, 
for example for control systems in the manufacturing 
industry (see also Section 5.2.3).

Current and future use of selected models and methods according to respondents across all application 
 industries (multiple answers possible)*.
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Figure 4 - Survey result: Neural networks will be the most important model type in the future, significant increase expected in the 
application area of reinforcement learning 
* Only a limited number of categories of typical AI models and methods that were considered relevant for the subject of the study could be selected in the questionnaire. The graph 
shows the proportion of respondents who stated that they use or develop models or methods from the respective AI model or method categories. Several survey participants 
added the categories „expert systems“, „knowledge graphs“ and „semantic web“ under „other“. 
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As part of the survey, participants were also asked to 
assess the explanatory power of individual decisions 
(local explanatory power) when using different AI mod-
els. The questionnaire explicitly stated that explanatory 
tools should also be taken into account where appro-
priate. What is striking about the survey results is that 
the five AI models that were rated as least explainable 
overall come exclusively from the neural network model 
family (see Figure 5). However, more than half of the 
respondents already consider these five AI models to be 
at least partially explainable locally, at least with the help 
of appropriate explanatory tools. A trend is emerging 
here that shows a discrepancy with the public debate, in 
which neural networks, for example, are often discussed 
as not being explainable at all.

On the other hand, it is also striking that a high propor-
tion of the respondents consider the various model 
variants that can be assigned to neural networks to be 
not explainable at all. Here the range extends from just 
over 20 percent for convolutional neural networks to 
45 percent for generative adversarial networks. This 
indicates that existing, relevant explanatory tools (Chap-
ter 3) are not yet known to a significant proportion of 
respondents.

Overall, it can be seen that the theoretical division into 
white and black-box models, as often described in the 
literature (see section 2.2.3), is no longer equally re-
flected in the survey results when explanatory tools are 
explicitly taken into account. For a large proportion of 
the models, a majority indicated that they were “partially” 
explainable. Only decision trees and linear and logistic re-
gression models were attributed by a majority (about 60 
percent) to the “fully explainable” category. The survey 
also shows that Bayesian networks (nominal white-box 
models) received the label “not explainable at all” more 
often than support vector machines or ensemble models 
(both black-box models). This suggests that, in addition 
to the multilayeredness and the number of parameters of 
models, a certain experience in dealing with the models 
also plays a role.

The assessment of the current explainability of in-
dividual decisions (local explainability) of individual 
AI models contrasts with the concrete requirements 
from the individual industries. The survey results show 
clear differences between the industries (see Figure 6). 
Explanability is assigned a particularly important role for 
fields of application in which critical decisions are made. 
Explainability is often even mandatory in these cases, 

Generative adversarial networks

Autoencoder

Figure 5 - Survey result: Providing decision explanations for neural networks is considered difficult.
* Persons only were asked about individual model types if they previously stated that they developed or applied models of the assigned supercategory. Respondents also had 
the option of stating „I cannot judge“ as an assessment. In the figure, however, only information from persons who gave a corresponding judgement was taken into account. The 
individual methods were assessed accordingly by 16 to 81 persons and, in relative terms, by 50 to 84 percent of the persons surveyed in each case.
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Assessment of the explainability of individual decisions (local explainability), which may have been increased by 
applying explanatory tools, related to selected AI models*.
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e.g. for certification, seals of approval, standards, etc. In 
the healthcare industry, the creation of decision explana-
tions is most important, which can be well plausibilized, 
since here wrong decisions can have fatal consequences 
in the worst case. Other industries where explainability 
of decisions is considered particularly important are 
finance, manufacturing, construction and process indus-
tries. The key role of local explainability results here from 
the requirements of customers and users, who generally 
would not accept a system that cannot explain individual 
decisions. 

Production management and the process industry 
are characterized by a high degree of automation and 

special safety-related requirements; they are therefore 
demanding fields of application for AI applications in 
general and at the same time of great importance for 
Germany as a business location.

Depending on the respective industry, AI products and 
models are used by different people with different self-in-
terests. Accordingly, the explanations generated must 
also be adapted to the respective target groups in order 
to offer added value. The addressees range from the 
groups of AI experts (developers) and domain experts 
(users) to internal or external auditors, management and 
possible end customers. In the healthcare sector, for 
example, patients represent the end customers. The AI 

Figure 6 - Survey result: local explainability most required in sectors health, finance, manufacturing.
* Only people who had previously stated that they were using or developing AI systems in or for the respective application industry were asked about the individual application 
industries. In the figure, the industries were sorted according to the derived importance of decision explanations or local explainability (derived from the percentage of replies 
„mandatory“ or „very desirable“). For other application sectors that few people specified as their target or application industry, local explainability was also classified as very desir-
able or mandatory several times, in particular for the rather unspecific application industry „IT / Software“. For other individual additions such as “Legal Tech“, “Human Resources” 
and “Public Security “ local explainability was considered mandatory for the persons concerned.
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systems - mostly decision support systems - are gener-
ally used here by medical staff, who in this context can 
be classified as a group of domain experts.

The survey results suggest that explainability is now 
particularly important for AI developers and domain 
experts (see Figure 7). This can also be observed when 
looking at all individual sectors. In addition, respondents 
expect the importance of explainability for most target 
groups to converge more and more in five to ten years: 
That is, explainability could generally also become 
more important for end customers, the management 
level, and internal and external auditors, while at the 
same time its importance will decline for AI experts and 
remain unchanged for domain experts.

The fact that the greatest change is predicted for end 
customers and external auditors can be interpreted in 
this way: Survey participants expect an increase in the 
importance of AI certification as well as in the general 
demand from customers for explainable AI as a result of 
a larger product offering. The expected loss of impor-
tance of decision explanations from the perspective of 
AI developers is somewhat more difficult to understand. 

This trend could be driven by the two very contradicto-
ry assumptions of the survey participants, i.e. that the 

regulatory authorities will attach less importance to 
explainability in the future or that the use of black box 
models will be generally prohibited in certain areas of 
application (“high-risk”) in the future. It is also conceiv-
able that many scientific representatives, who rightly 
see themselves as AI developers, expect significant 
progress or a reduced need for research in the research 
field in five to ten years’ time. However, if one excludes 
this slightly declining trend among AI developers from 
consideration, the growing importance of explainability 
becomes clear for all other stakeholders involved, right 
up to management level.

With the adaptation of the explanations to the corre-
sponding target group, the question also arises as to the 
concrete implementation or presentation of the explana-
tion that can bring the greatest benefit to the addressee. 
When asked in which way explanations can or should be 
implemented, most participants answered that graphic 
representations are well suited (see Figure 8). However, 
the survey, in which multiple responses were possible, 
also shows that there are basically many feasible ways 
to concretely design explanations; a universal solution 
cannot be identified. Rather, it can be assumed that the 
implementation depends on several factors - e.g. target 
groups or underlying data types - and that a well-suited 
solution must be found individually.  

Target group

Explainability of individual decisions 
(local explainability)

Today Future
(5–10 years) Trend

AI developers 76 % 56 %   -20 %

Domain experts 59 % 59 %     -1 %

Management 38 % 57 % 19 %

End customers, end users 35 % 65 % 31 %

Internal auditors 41 % 57 % 16 %

External auditors 35 % 63 % 28 %

Figure 7 - Survey result: Explainability today especially important for AI and domain experts, in the future a comparable importance is 
predicted for almost all target groups. 
* The table shows how many percent of the survey participants consider the respective group to demand explanations of AI decisions (local explainability), evaluated across all 
application industries (while survey participants were asked with regard to their individual application industry or industries).

Assessment of the importance of decision explanations for target groups*.



394 | THE CURRENT USE OF EXPLAINABLE AI

Explanation of the graphic:

• Graphical representation: e.g. display of the influ-
ence of individual characteristics on a decision

• Statistical evaluation: e.g. presentation of similar 
conditions and corresponding decisions

• Pictorial implementation: e.g. highlighting of 
decisive areas in image recognition

• Textual (simple) justification: e.g. naming the 
main reason for the decision.

• Interpretable surrogate model: e.g. generation of 
a decision tree for local approximation of more 
complex models

• Data point(s): e.g. data point(s) that would have 
caused a contrary decision (counterfactual expla-
nations), representative data point for a particular 
class (prototype)

• Textual (detailed) justification: e.g. explanation 
of individual steps of the algorithm

Graphical representation 

Pictorial implementation 

Interpretable surrogate model 

Textual (detailed) justification 
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Figure 8: Survey result: Graphical representation considered most useful by survey participants.
* The graph shows the percentage of survey participants who expect the respective type of implementation or improvement of an explanation. 

Statistical evaluation 

Textual (simple) justification 

Data point(s)

Other

60 % 70 % 80 %

Types of explanations expected or desired by the participants (multiple answers were possible)*.





5 USE CASES FOR 
 EXPLAINABLE AI



42 EXPLAINABLE AI
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The survey results on the industry-specific importance 
of explanations for individual decisions (local explaina-
bility) identify the healthcare sector relatively clearly as a 
field in which AI will not establish itself without sufficient 
explainability (see Figure 6 in Chapter 4). For a number 
of other industries, such as finance, manufacturing, 
construction, process industries, energy, and services, 
the majority of respondents also sees sufficient explain-
ability as essential for AI to become established in the 
long term. However, while in these six industries the lack 
of acceptance of opaque AI modelsis mainly due to res-
ervations among customers or users, in healthcare the 
regulatory hurdles for such systems are already seen as 
insurmountable, according to the survey participants.

Therefore, two use cases from the healthcare sector 
are presented below. This is followed by one use case 
from the general manufacturing industry and another 
use case from the process industry. These application 
areas are characterized by a high degree of automation 
and special safety requirements. They are therefore 
challenging fields of application for AI in general and 
at the same time of great importance for Germany as 
a business location. The information on the use cases 
was mainly derived from the interviews with experts and 
information from the literature6.

6 The team of authors generated the descriptions of the use cases, and 
is thus responsible for any supposed oversimplification or incorrect 
representation of details.

5.1 Use cases in healthcare 
In the medical field, AI algorithms are used to solve 
various problems. Image data like X-ray findings, dig-
itized tissue sections or MRI scans, but also text data 
(medical reports and medical findings) or sensory data 
(electrocardiogram and blood pressure readings) can 
be analyzed more quickly and often more precisely with 
the help of AI algorithms. The evaluation of the analysis 
results can help to detect abnormalities in the data at an 
early stage and to react to them with appropriate further 
examination and treatment steps.

In addition to the important task of establishing ac-
ceptance and trust among users and those affected, 
healthcare-specific regulatory requirements must be 
met and privacy- and data security-related precautions 
must be taken in order to be allowed to include AI sup-
port in critical decisions. Especially the strict regulatory 
hurdles compared to other industries complicate or 
delay a broad availability of AI solutions on the market 
(BDVA Task Force 7 -Sub-group Healthcare 2020). After 
the following descriptions of two use cases - AI-support-
ed image analysis and automatic analysis of medical 
reports - the regulatory aspects in the healthcare sector 
are discussed separately. The two use cases represent 
two typical applications of AI in the healthcare indus-
try employing image processing and natural language 
processing (NLP)7.

7 According to our survey, image and text data are used most frequently, 
along with numerical data (see Chapter 4).
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5.1.1 Use case: AI-supported image  analysis 
of histological tissue sections

Compared to non-invasive medical imaging, e.g. X-ray 
or Magnetic Resonance Imaging, histological imaging 
uses removed tissue samples that are stained with dyes 
or dye-labelled antibodies. Staining makes structures 
and cells visible. After the staining process, pathologists 
examine histopathological tissue sections of samples 
taken from a patient with suspected cancer (as part of a 
biopsy) for abnormalities. At present, most of this work 
is still carried out manually.

In corresponding research approaches8, it is being test-
ed how AI algorithms can support pathologists in their 
work. On the basis of digital scans of tissue sections, 
trained AI models can help to detect abnormalities and 
patterns that indicate a disease. The use of AI in this 
use case can help improve and speed up the analysis of 
medical image data by increasing the information gain 
for domain experts (Nagpal et al. 2018). The result of an 
AI analysis, for example, might reveal a wide variety of 
anomalies in the data. The pathologist can then com-
bine these findings with his own experience and poten-
tially make a more differentiated diagnosis, reducing the 
risk of missing critical anomalies9.

The input data are image data, which typically do not 
have a uniform format and are characterized by a high 
resolution. Convolutional Neural Networks are primarily 
used for the analysis of the image data.

8 Project EMPAIA (https://www.empaia.org/) within the technology pro-
gramme “AI Innovation Competition” of the German Federal Ministry for 
Economic Affairs and Climate Action.

9 An additional motivation for the use of AI is the stratification of patients 
into different treatment groups according to their individual risk. Based 
on this, individual therapy decisions can potentially can be derived, which, 
however, is no longer the focus of this use case. Precision medicine and 
personalized medicine can thus be pursued and improved in the future.

In contrast to white-box models, these black-box 
models are particularly suitable for automatic image 
processing. This is because complex patterns in images 
can be recognized implicitly without the developer 
having to specify rules. Therefore, AI-assisted image 
analysis of histological tissue sections, which will be 
considered in more detail below from the perspective of 
the relevant target groups, is also often based on CNNs, 
generated by supervised learning approaches10.

In this use case, a physician is supported by an automat-
ed, AI-based anomaly detection system. The physician 
decides to what extent the results of the AI system 
should be taken into account for each individual diagno-
sis and thus also bears the responsibility. At the same 
time, the AI system assists with recommendations 
for potentially critical decisions that have a significant 
impact on the patient’s physical well-being and can have 
fatal consequences in the event of misdiagnosis. 

Target groups and overarching goals for the use of 
explainable AI
In the use case, the most important target group is the 
medical staff who will to use the system. At the same 
time, accredited bodies must be addressed (in this case 
the “Notified Bodies for Medical Devices”11, see 5.1.3). 
Finally, the AI developers themselves also play an impor-
tant role, especially with regard to the (further) develop-
ment and improvement of the AI system.12

10 In principle, “Weakly Supervised Learning” and “Unsupervised Learning” 
as well as “Transfer Learning” can also be considered to improve models 
further, which is also being investigated in research.

11 Notified bodies are state-authorised bodies that carry out conformity as-
sessments on behalf of manufacturers, e.g. for the approval of medical 
devices (Federal Institute for Drugs and Medical Devices, n. d.).

12 Use cases comparable to this one are often research projects, which 
is why corresponding researchers with AI or health expertise could in 
principle represent a further target group. In this and the following use 
cases, however, they will be consistently classified as developers if they 
develop corresponding systems. Due to the focus on practical imple-
mentations, researchers who investigate general medical contexts are 
not considered. Explanations could nevertheless help such researchers 
to discover associations in the data (such as correlations that give 
indications of causal relationships) and thus new biomarkers that can be 
used to improve the detection of diseases in general, or in this case for 
the diagnosis of cancer.
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Another target group that could place more emphasis 
on the explainability of AI decisions in the future is, of 
course, the patients themselves. However, since the 
AI system is only used as a supporting analysis tool 
for domain experts (medical staff), it also remains the 
domain experts’ task to provide personal explanations to 
patients. Therefore, patients are not explicitly considered 
as a target group in this use case.

A key motivation for using explainable AI in the use case 
is to “find” causal relationships (to relate particularities 
in the patient data to classifications of the AI system), 
which is especially important for domain experts - in this 
case, pathologists. Developers use the explanations to 
determine the confidence (functionality, robustness and 
stability) and thus identify fundamental vulnerabilities of 
the system with respect to various disturbances, such 
as statistical measurement errors, in input or training 
data. On the other hand, it is also the aim of developers 
to identify possible data bias, i.e. systematic error, in the 
training data (evaluate the fairness or detect data bias), 
as this can also result in the non-detection of tumours. 
In addition, regulatory or approval requirements must be 
met, but these are still largely unclear at present.

Explainability requirements from the perspective of 
the target group(s)
When using explainable AI in the use case considered 
here, the developers’ particular aim is to increase confi-
dence. This does not necessarily require explainability of 
the inner mechanisms of the model. However, it must be 
possible for this target group to identify if the data used 
to train the model contained a possible bias in order to 
minimize the risk of wrong decisions.

A mere explanation of how the algorithm works and 
how the given information is processed is not sufficient 
for this purpose (e.g., which layers of a neural network 
are responsible for recognizing the different structures 
of an image that supposedly shows a tumor). Rather, 
developers must be enabled to examine the factors that 
might influence the AI system’s decision-making behav-
ior, such as a possible bias caused by an unbalanced 
database. It must be avoided that the algorithm learns 
decision criteria during training that are not applicable 
in practical use or lead to erroneous results. This could 
be, for example, the classification of histopathological 

sections according to the scanner used or the date of 
acquisition. Another example is the use of image data 
which was already analyzed by medical experts. Pathol-
ogists may have already marked tumor areas manually 
- and the AI system then learns to recognize tumors only 
on the basis of these markings.  

A bias in the training data could also result in a poor per-
formance of the application for a different, for example 
significantly younger, patient group. The aim is to elimi-
nate such error sources already during development. 

The domain experts (healthcare professionals) who will 
use the explanations in practice should be able to check 
the system’s decisions to see whether the results are re-
liable from a medical point of view. Even if concrete cri-
teria for approval in terms of explainability have not yet 
been defined, several of the interviewed experts assume 
that at least individual decisions of the AI system on 
single patients must be comprehensible to physicians 
(local explainability). The lack of a detailed explainability 
of the inner model mechanisms would therefore not be 
a criterion for an exclusion of a system from approv-
al. Rather, pathologists need to be presented with the 
indicators of why a specific decision was made so that 
they can use their own domain knowledge to make an 
informed assessment of the outcome of the AI system.

In particular, presentations of intermediate results can 
be helpful here, e.g., the segmentation of conspicuous 
image areas, in order to enable the domain experts to 
assess the plausibility of a given result.

Even if the regulatory requirements for explainability 
(see 5.1.3) are still very unclear, it is precisely these re-
quirements that are crucial for the subsequent practical 
use of AI systems. Currently, a checklist of the “Notified 
Bodies for Medical Devices” is used for the approval 
of AI in the medical sector in Germany (Interessenge-
meinschaft der Benannten Stellen für Medizinprodukte 
in Deutschland 2020). However, the checklist remains 
vague regarding explainability. One item on the checklist 
deals with the question of whether the developer has 
used explainable AI during implementation; another ad-
dresses the extent to which the end user has confidence 
in the product. Today, no concrete approval require-
ments can be specified with regard to explainability. 



455 | USE CASES FOR EXPLAINABLE AI

Explanation strategies
Post hoc methods already exist for explaining the 
decisions of neural networks, which focus in particular 
on the visualization of the results. In the input image, 
individual areas are highlighted according to their 
influence on the result of the AI algorithm. On this basis, 
the domain expert can decide whether the results are 
plausible, i.e. whether the highlighted image areas are so 
relevant that they can also be used as a basis for classi-
fication or segmentation from a medical point of view.

In the concrete use case of image analysis of his-
topathological tissue sections, neural networks are 
predominantly used to identify disease-relevant image 
areas indicating possible tumor cells. The focus of 
explanatory tools used here is on the generation of 
explanations through visualization. Specifically, the LRP 
method can be used to identify pixels in the input image 
that have a particularly high positive or negative influ-
ence on the classification result. LIME creates linear, 
local models to make it easier to understand individual 
decisions of the neural network. An advantage of LIME 
is the easy integration, LRP can provide explanations 
very fast. When using LIME in practice, it must be taken 
into account that the method is less suitable for very 
high-dimensional input data, so that the resolution may 
have to be scaled down. However, both methods should 
not be used without an understanding of how they work, 
and in this case only with prior knowledge of pathology 
and neural networks.

Potentially, other explanatory tools, such as Grad-CAM, 
Integrated Gradients, or DeepLIFT13, intended for neural 
networks processing image data, are applicable to this 
use case. Alternative implementations of visualizations 
for the domain experts are possible as well.

13 Pocevičiūtė et al. 2020 describe other concrete possibilities for the use of 
explanatory tools in pathology, for example Excitation Backprop, Pattern-
Net or tSNE (Pocevičiūtė et al. 2020).

Another approach is the use of Counterfactual Expla-
nations. These can be applied to image data as well 
as other data types. The basic idea is to use counter-
factuals to increase comprehensibility. Specifically, the 
target person is presented with hypothetical changes 
to the input data that would lead to a classification in a 
different class. In the example of image data, additional 
images are generated synthetically that look as similar 
as possible to the input images, but are each assigned 
to a different class (Goyal et al. 2019).
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USE CASE
AI-supported image analysis of histological tissue sections
at a glance

TYPE Anomaly detection (decision support)

CRITICALITY Very high (medical device)

DATA TYPES Image data (2D, 3D), digitized tissue sections, high resolution

TYPICAL AI MODELS
Neural Networks (e. G. CNNs, GANs),  
(Explanatory deficits or black-box models)

(MAIN) GOAL GROUPS   
and respective overall objectives  
for the use of explainable AI

DOMAIN EXPERTS (medical staff):  
Check plausibility of causal relationships (find causal relationships)

DEVELOPERS: 
Determine confidence (robustness, stability), test fairness (detect possible 
data bias)

APPROVING AUTHORITIES (“Notified Bodies”): Verify compliance with approv-
al requirements

CONCRETE REQUIREMENTS   
for explainability

DOMAIN EXPERTS (medical staff):  
assessment of the quality of individual (“local”) decisions

DEVELOPERS: 
Assessability of the model quality and revelation of bias in the training data 
(via “local” explanations of decisions)

APPROVING AUTHORITIES: 
Verification of “comprehensibility” (concrete reulatory requirements current-
ly under discussion), reduction of complexity

SUITABLE  
EXPLANATORY STRATEGIES 

Decision explanations (post hoc), e.g. LRP, LIME 
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5.1.2 Use case: AI-supported text analysis 
of medical reports

A medical report summarises important data from a 
patient’s medical history. The document can, for exam-
ple, contain information on examinations performed 
and corresponding findings. Medical reports are used, 
among other things, for referrals to specialists or when 
patients are discharged from hospital, in order to pass 
on information from patients to specialist physicians or 
general practitioners.

When a differential diagnosis is made by the doctor, 
the complaints and symptoms recorded in the medical 
report are used as a basis. In the context of a differential 
diagnosis, clinical pictures that show similar symptoms 
are identified in a first step and then differentiated from 
each other with the aim of excluding irrelevant clinical 
pictures. In this way, a more reliable diagnosis can be 
made in many cases14.

This process can be supported with the help of AI15. In 
concrete terms, Natural Language Processing (NLP) 
methods are used to automatically record and evaluate 
the content of a medical report. The aim of using AI 
processes is to support doctors by suggesting other 
possible clinical pictures whose symptoms correspond 
to those of the patient. The doctors are thus presented 
with a wider range of possibilities and the result of the 
AI system can be used like the second opinion of a col-
league. Time saving is another advantage: NLP allows 
the doctor to automatically make a quick diagnosis. 

14 If a patient is hospitalized with chest pain, for example, this symptom 
may indicate acute coronary syndrome or pulmonary embolism. In the 
context of a differential diagnosis, the aim is to identify these and other 
possible clinical pictures and then to exclude individual clinical pictures 
on this basis, for example on the basis of the patient’s previous illnesses 
or risk factors (Strong Medicine 2018).

15 The article on differential diagnosis ( https://www.BMWK.de/Redaktion/
EN/Artikel/Digital-World/GAIA-X-Use-Cases/differential-diagnosis.html) 
describes practical examples and current challenges.

It is not always easy to obtain an overview of the pa-
tients’ medical history, which is often unstructured. In 
addition, the exchange between two physicians regard-
ing similar patients is often difficult, since the identifica-
tion of these patients is mainly done through personal 
conversations, which are very time-consuming. An 
automatic matching based on medical reports would be 
very helpful for this problem.

The AI models used in this medical text analysis use 
case are neural networks. Specifically, Transformer Net-
works are used, which have been repeatedly described 
in the literature as state of the art in NLP tasks (Otter 
et al. 2018; Wolf et al. 2019; Nambiar et al. 2020). Deep 
Learning, to which Transformer Networks are counted 
due to their many layers, offers the advantage over other 
methods that latent features are also detected: That is, 
information that is not immediately recognizable, which 
plays a role especially in the acquisition and processing 
of speech, such as indirect references or logical infer-
ences. An indirect reference would be the description of 
the patient by words like “he” or “she” or “him” or “her”. 
The networks are pre-trained on large medical data-
sets (Unsupervised Learning) and then adapted for the 
specific application (following the concept of Transfer 
Learning): Prediction of diagnosis through Supervised 
Learning. Only after training has been completed the AI 
system will be used in practice.

As with the previous use case of AI-supported image 
analysis of histological tissue sections, this is primarily 
an AI system for decision support. A similarity analysis 
is performed, which the physician can incorporate into 
the creation of the differential diagnosis. The respon-
sibility lies with the medical professional. Likewise, the 
criticality is very high, as the results of the AI system are 
potentially used to make health-critical decisions.
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Target groups and overarching goals for the use of 
explainable AI
Domain experts, i.e. doctors, are to be supported by the 
AI system in assigning symptoms and complaints to dif-
ferent clinical pictures. The use of explainable AI should 
increase the information gain for the domain experts 
and thus make decision support possible in the first 
place. In addition, domain experts are driven by the goal 
of “finding” causal relationships, which can be achieved, 
for example, with the help of recognized medical publi-
cations that link certain symptoms to diseases and vice 
versa. Confidence - particularly important for develop-
ers - is to be increased by making the data basis more 
plausible through simplification, so that two patients 
with the same symptoms are also assigned the same 
clinical picture.

Explainability requirements from the perspective of 
the target group(s)
For domain experts and healthcare professionals, the 
central decision-making criteria of the system play a 
particularly important role. The physician must be able 
to decide for each patient individually to what extent a 
proposed clinical picture can be considered medically 
plausible on the basis of the symptoms present. In order 
to do this, a system that is intended to support this 
decision must be able to justify the content of individual 
decisions. In this way, a medical expert can efficiently 
assess whether a criterion that was decisive for the 
classification is either plausible or not medically reason-
able. Consequently, this is the only way for the physician 
to decide whether the results of the AI system should be 
included in the differential diagnosis or not.

From the point of view of medical experts, it makes 
sense to provide appropriate explanations by display-
ing similar cases (patients with similar risk factors and 
corresponding symptom composition) or findings from 
the literature (publications from the medical field). Be-
sides the fact that the use of medical literature as a data 
source per se adds enormous value to the AI system, 
the number and recognition of suitable sources can also 
be used as an indicator for the confidence of decisions. 
Moreover, even if this is a rather indirect consequence, 
the time-consuming exchange between physicians can 
be simplified by explainable AI, if the AI system makes 
the disease histories comparable in an automated way 
and accelerates the identification of patients with similar 
histories16.

16 On the basis of a corresponding highlighting of patient cases with high 
similarities, it could be decided in a timely manner whether a further 
exchange between the treating physicians appears to be useful.

During the implementation of such an AI system, the 
developers are primarily concerned with the early de-
tection of errors that arise due to medically implausible 
“features”. This includes, above all, the consideration 
of the data basis. For example, the distribution and fre-
quency of diagnoses should be examined (with the help 
of the medical experts) so that subsequent decisions by 
the system are not made on the basis of a bias in the da-
tabase. This requires a systematic examination of the al-
gorithm with regard to single variables and correlations 
of variables. For example, for an input variable such as 
age, it should be checked whether its systematic change 
or variation changes the prediction of the AI system as 
expected by the healthcare professionals or whether it 
is influenced by peculiarities in the training basis that do 
not correspond to reality. The focus here is on checking 
single-case decisions (local explainability), which can 
also be generated for AI models with black-box com-
ponents using appropriate explanatory tools. The data 
basis for the AI model becomes more comprehensible 
primarily through plausibility checks.

As described above, specific requirements for explaina-
ble AI in the healthcare sector are still under discussion 
from the perspective of the regulatory authorities. In 
principle, it must be demonstrated to the regulatory 
authorities that the system achieves the objective pur-
sued - e.g. increased efficiency or improved differential 
diagnosis. This point is also essential for other target 
groups such as hospital management, as indicators of 
economic efficiency can be derived from it. As in the 
first use case, a possible future target group is that of 
patients who are interested in an explanation of the di-
agnosis they have been given, but who are not explicitly 
considered here either17.

17 The attending physician uses the AI to make a diagnosis, which is then 
communicated to the patient. The diagnosis is therefore only discussed 
directly with the attending physician; the patient does not have to be able 
to understand the result of the AI system independently.
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Explanation strategies
In the considered use case, two concrete strategies are 
pursued to ensure explainability. Both focus in particular 
on the target group of domain experts (medical profes-
sionals). However, the provision of decision explanations 
is not ensured “post hoc” via the detour of an additional 
tool (as in the first medical use case). Instead, the model 
itself can provide decision explanations18. The basis for 
providing explanations are black-box models (neural 
networks), which are extended by prototypes or external 
knowledge bases, so that the model itself can provide 
medically comprehensible reasons for individual deci-
sions and fulfils the requirement of local explainability.

In the first approach, the neural network works with 
prototypes. In the simplest case, a prototype is a single 
representative instance from the data basis. In this use 
case, a prototype would be a clinical picture with corre-
sponding symptoms, derived from a medical report. For 
more generalization, multiple instances are often com-
bined into a representative prototype (using supervised 
learning). For example, a patient suffering from influen-
za complains of a cold and headache and has a body 
temperature of 39° C. These symptoms are noted in the 
medical report. Another patient, who is also diagnosed 
with influenza, has a severe sore throat, cough, and 
also a fever. When creating the prototype for the clinical 
picture “flu”, the symptoms of both patients would now 
be summarized and noted.

With the help of suitable prototypes, complex data sets 
can be presented to the users in a more comprehensi-
ble way. This explanatory approach differs from others 
(such as e.g. quantifying the influence of a parameter 
on a result or approximating the AI model in a post hoc 
manner) in that the individual prototypes do not only 
improve the comprehensability, but also determine the 
outcome of the given AI system. 

18 The literature contains contradictory information on the designation of 
such models. Some sources classify these models as antehoc (despite 
their BlackBox content) (Sokol and Flach 2019; Holz-inger 2018). 
However, there is some dispute in the literature as to whether ante-hoc 
explanatory power is a property that only white-box models may claim, or 
whether black-box models that provide certain explanations also provide 
them “ante hoc”. In the following, ante-hoc explainability is only used for 
white-box models and explicitly referred to when black-box models are 
also meant, without using “post hoc” explainability tools for them.

If a “new” medical report is to be classified, the charac-
teristics described (symptoms such as tiredness, cold, 
sore throat and increased temperature) are compared 
with those named in the individual prototypes and the 
prototype with the most matches is selected. Appropri-
ate distance functions or classification methods such 
as K-Nearest-Neighbor can be used for this purpose. 
After the most similar prototype (in this example “flu”) 
has been identified, it can be compared with the medical 
report and the crucial matches (cold, sore throat and 
increased temperature) can be highlighted to make the 
diagnosis of the AI algorithm comprehensible.

In the second approach, neural networks are combined 
with external knowledge bases, such as publications or 
general medical works in which diseases are described. 
The neural network learns the connection between 
symptoms and diseases on this data basis. Subse-
quently, the model can be further trained with medical 
reports. The knowledge bases can be understood 
as high-dimensional knowledge graphs in which the 
representations of thematically similar publications are 
placed close to each other. If a “new” medical report is 
to be classified, the AI model makes a decision that can 
be directly traced back to the statements of the publi-
cations from the knowledge base. This makes it easy to 
check conclusions and increases the comprehensibility 
of the model. When a decision is made, the physician 
is shown relevant publications for individual sections of 
the medical report that describe the facts under con-
sideration - for example, specific clinical pictures that 
often occur with the symptoms described. In this way, 
the physician can draw conclusions about the credibility 
of the publication and the credibility of the algorithm’s 
decision.
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USE CASE
AI-supported text analysis of medical reports
at a glance

TYPE Similarity analysis (decision support)

CRITICALITY Very high (medical device)

DATA TYPES Text data: Medical reports

TYPICAL AI MODELS
Neural Networks (Transformer Networks)
(Explanatory deficits or black-box models when used alone)

(MAIN) TARGET GROUPS   
and respective overall objectives  
for the use of explainable AI

DOMAIN EXPERTS (medical staff): 
Increase information gain, check plausibility of causal relationships (“find” 
causal relationships)

DEVELOPERS: 
Determine confidence (robustness, stability)

APPROVING AUTHORITIES (“Notified Bodies”): 
Verify compliance with approval requirements

CONCRETE REQUIREMENTS   
for explainability

DOMAIN EXPERTS (medical staff):   
Enable decision support through substantive justifications (local explaina-
bility)

DEVELOPERS: 
Deeper understanding of the functioning (through local explainability) 

 to improve the systems

APPROVING AUTHORITIES:  
Verification of “comprehensibility” (concrete regulatory requirements cur-
rently under discussion), reduction of complexity

SUITABLE  
EXPLANATORY STRATEGIES 

Decision explanations by prototypes and external knowledge bases in 
 combination with neural networks
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5.1.3 Regulation and certification in 
 healthcare

Due primarily to criticality and data sensitivity, certifica-
tion requirements for software systems in the medical 
field are particularly demanding. In recent years, various 
adjustments have been made in Germany regarding the 
permissible use of software components within medical 
devices. However, the formulation and implementation 
of concrete requirements for AI systems is currently still 
in progress.

From 26 May 2021, the new Medical Device Regulation 
(MDR) will come into force and replace the Medical 
Device Directive (MDD) currently in force (Remark: 
The editiorial deadline of the original study was in April 
2021). The MDD of the European Union was previously 
transferred into German law by the Medical Devices Act 
(“Medizinproduktegesetz”). Compared to the MDD, the 
MDR also contains some changes regarding the approv-
al of software, which consequently also applies to AI 
applications. From now on, software will be classified in 
higher risk classes, resulting in more demanding require-
ments. The MDR describes four different risk classes, 
the classification of the applications is based on the 
intended use. Specific requirements are described, for 
example, for the development, validation, verification of 
functionality, production and monitoring of algorithms, 
which are in turn checked by the German state-author-
ised institutions (“notified bodies”) that carry out the 
conformity assessments for the approval of medical 
devices.

However, there are no specific standards for the certifi-
cation of AI systems, so it is often unclear how the spe-
cific requirements are to be implemented. In addition, 
there are numerous standards and guidelines that can 
potentially also be applied to AI systems. For the certifi-
cation of AI systems, the Johner Institute - a well-known 
German company that offers consulting services for the 
approval of medical devices - has therefore developed 
a checklist as an orientation guide, which is used by 
the notified bodies as the basis for their own checklist. 
This explicitly restricts the approval of software in the 
medical field to pre-trained AI systems. Accordingly, no 
AI algorithm can currently be approved that continues to 
learn during operative use i.e. that changes its general 
behavior of decision-making due to a re-training with 
new data without official re-certification. 

 

In the aforementioned checklist of the “notified bodies”, 
the following requirements for an approval with refer-
ence to explainability are formulated (Interessengemein-
schaft der Benannten Stellen für Medizinprodukte in 
Deutschland 2020): 

• The manufacturer should have analyzed the extent 
to which explainable AI approaches can make the 
developed model and/or its decisions more compre-
hensible.

• The applicability of different types of AI models 
should be investigated (especially comparisons with 
“simpler and interpretable” models should be made). 
With regard to the interaction with users, the extent 
to which they trust the system or want to review 
decisions should be examined.

• Further measures to be taken: Risk management 
(assessment of risks arising from the use of AI or its 
unintended use, e.g. with regard to input values or 
groups of patients), assessment of prediction quality, 
performance, training data sets (scope, origin, possi-
ble bias) and reproducibility of the results as well as 
creation of a post-market surveillance plan (activities 
or procedures to be followed when the product is 
on the market) to ensure model quality even after 
approval.

The “notified body” examines the aspects of the check-
list individually, so that decisions are always made on 
a case-by-case basis and individual requirements can 
also be interpreted differently. From the perspective of 
system development, it is important to specify the ap-
proval requirements for an AI system in order to be able 
to address them appropriately. In particular, concrete 
requirements for explainability are unclear. However, 
corresponding specifications could support companies 
during the development process, accelerate certifica-
tions and increase the safety of patients. Explainability 
could also contribute to a possible certification of AI 
systems learning “on the job” in the future. Such AI sys-
tems that learn continuously offer the opportunity, for 
example, to improve diagnoses and prognoses through 
greater individualization. At the same time, however, the 
assessment of risks and the validation of safety aspects 
is significantly more difficult in this case (Interessenge-
meinschaft der Benannten Stellen für Medizinprodukte 
in Deutschland 2020; Arbeitsgruppe Gesundheit, Mediz-
intechnik, Pflege 2019).
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Proposals for an approval of AI systems learning “on-
the-job” have already been developed in the US. In a 
first draft paper, the U.S. Food and Drug Administration 
(FDA) describes a “Total Product Lifecycle Regulatory” 
approach, which includes a predefined plan for changes 
- including the type of change - after approval of the sys-
tem. It must be possible to review these changes with 
regard to potential risks for patients. For example, newly 
added data must also be “quality assured” (compared to 
the original data and depending on specific application). 
In addition, it must be justified why the new data are 
necessary, and the specific goal of the new algorithm 
training must be explained. The previous system and 
the newly trained one should be compared with regard 
to previously defined prediction quality criteria, with the 
respective changes being transparent to the users. In 
the action plan published by the FDA in January 2021, it 
is described that the previously prepared draft paper will 
be revised according to the results of further discus-
sions that have taken place. In addition, the creation of 
“transparency” for users of AI systems is to be pursued 
further and focused more strongly (U.S. Food & Drug 
Administration 2020, 2021; Working Group on Health, 
Medical Technology, Care 2019).

5.2 Use cases in manufacturing
The practical requirements of the manufacturing indus-
try with regard to explainable AI reflect the fact that in 
this domain there is often a great deal of expert knowl-
edge available on addressed processes, machines and 
plants and that economic efficiency plays the central 
role. Instead of processes in the human body, which AI 
systems in the healthcare industry analyze, the focus of 
software and AI system development here is on “hu-
man-designed” machines, plants or processes and their 
efficient operation.

In manufacturing, possible AI applications range from 
analysis tasks, such as machine monitoring or qual-
ity control, to planning support, e.g. for procurement 
processes, to autonomous systems, such as driverless 
transport robots or AI-supported process control. The 
entire spectrum of human-machine interaction is also a 
rapidly developing field of application.

 

Generally, a distinction is made between such manufac-
turing industries, where products are manufactured as 
countable units, and the process industry. The differenc-
es in the manufacturing processes result in differences 
in the risk potential. While potential accidents in the 
process industries, e.g., processing explosive and toxic 
materials, can have far-reaching consequences for peo-
ple and society in the wider geographic area, potential 
accidents in other manufacturing industries (e.g. as-
sembly of countable products) have more local effects 
on those affected and on the environment. Accordingly, 
the approval requirements for systems in the process 
industry are much stricter, which also has concrete 
implications for AI systems used in the domain and, in 
particular, the explainability of these AI systems.

As in the previous section, two use cases are presented. 
Section 5.2.1 describes a use case for AI-supported ma-
chine condition monitoring. It is one of the most typical 
AI applications that can be applied to many manufac-
turing industries. Section 5.2.2 presents a use case for 
AI-supported process control in which AI components 
are embedded in a larger overall system that controls 
safety-critical processes in chemical plants. While all 
components are under human supervision, the overall 
system is autonomous to a significant extent. The latter 
use case was selected because the AI-supported overall 
system must continue to learn during operation (“on-
the-job-learning”). This is typically not the case with de-
cision support systems that usually rely on pre-trained 
models.

While the creation of acceptance and trust by means of 
explainability is of great importance both in the process 
industry and in “discrete” manufacturing, the regulatory 
requirements that must be met for an approval in the 
respective fields of application can differ quite signifi-
cantly. Section 5.2.3 discusses regulatory aspects of the 
manufacturing industry and corresponding distinctions.
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5.2.1 Use case: AI-supported machine 
 condition monitoring

Downtimes of individual devices, machines or systems 
can quickly result in enormously expensive production 
losses. This is especially true when they are embedded 
in complex production processes and are responsi-
ble for critical processing steps there. Effective early 
warning systems that indicate machine malfunctions 
or maintenance requirements can reduce or completely 
avoid possible downtimes and make maintenance man-
agement more economical.

Conceivable applications exist in all subsectors of 
the manufacturing industry. During machine or plant 
operation, large amounts of data are usually generated, 
which are usually time series of numerical type. In the 
most suitable case, corresponding systems also output 
explicit error codes if a machine failure has occurred 
or is imminent. Taking into account the time when an 
error code was sent, the recorded data packets can then 
be subsequently provided with corresponding “labels” 
indicating the occurrence or imminent occurrence of an 
error. If sufficient operating and fault data are available, 
this results in a classic application scenario for super-
vised learning methods, namely the detection of anom-
alies in machine behavior (condition monitoring), which 
are to be discovered as early and as reliably as possible.

This condition information can help domain experts 
enormously to plan maintenance measures either 
on the basis of their own expertise or on the basis of 
corresponding models, and to schedule the exact timing 
of the maintenance measure with knowledge of the 
machine condition (predictive maintenance)19.

19 For dedicated, AI-based planning of optimal schedules for maintenance 
measures (predictive maintenance), strictly speaking, it is necessary to 
have a degradation model available for each individual type of damage. 
On the basis of appropriate models, the remaining lifetime of a machine 
or plant can then be estimated using regression methods. However, since 
suitable models often cannot be set up due to a lack of corresponding 
damage cases, the term predictive maintenance is often used when 
actually only the detection of anomalies (condition monitoring) in the 
machine or system behavior is carried out.

In principle, various appoaches employing black-box 
models, such as support vector machines, are well 
suited for the realization of the corresponding tasks of 
condition monitoring.

In the present case, however, the monitoring systems 
should output information about potential anomalies 
in machine behavior that is as comprehensible and 
localizable as possible. Statistical information on 
measurement and sensor data can be assumed as 
given. Therefore, the use case outlines an approach 
using ensembles of Bayesian networks on the one hand 
(approach 1) and a knowledge-based approach on the 
other (approach 2).

As in the use case of AI-supported image analysis of 
histological tissue sections, the aim in this use case is 
also to detect anomalies and provide decision-making 
support - however, here, in the manufacturing domain. 
Likewise, concrete classification results can often give 
an indication for a suitable maintenance planning. At the 
same time, the criticality of the application is high, since 
misclassifications or unrecognized signs of machine or 
plant damage can cause enormous economic damage.

Target groups and overarching goals for the use of 
explainable AI
The most important target group for explanations in 
this use case are the domain experts (maintenance or 
maintenance reliability teams), who are responsible for 
defining maintenance cycles and initiating maintenance 
processes. The core objective for the use of explaina-
ble AI in the use case is to make decisions qualitatively 
plausible for the domain experts, taking into account 
their understanding of the process (“finding” causal 
relationships). It is similarly important to convince this 
main target group, usually engineers by profession, of 
the statistical significance of individual decisions on an 
ongoing basis, e.g., of their robustness to varying meas-
urement errors (determining confidence).

Finally, it may be a desirable goal to improve interaction 
possibilities for domain experts, so that they themselves 
can improve the explanations of AI systems or even the 
systems themselves by means of corresponding inputs. 
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This can be understood as a basic motivation of the de-
velopers of AI systems, while the concrete requirements 
in this regard are defined by the domain experts.

The developers of the AI systems can also be considered 
to be stakeholders, since - at least in the introductory 
phase of corresponding AI systems - they have to set 
threshold values that determine how pronounced an 
anomaly must be for the domain expert to receive a 
warning message. However, this motivation is equally 
close to the overarching goal pursued by domain experts 
(determining confidence), which is why the target group 
of AI developers is only marginally considered here.

Another objective not considered here, which may be 
relevant for developers, arises when machines or plants 
of similar design are to be analyzed (testing transfera-
bility) and fed into the same data pool for this purpose. 
Since in the present use case models are only trained 
individually and in relation to single plants, this aspect is 
not considered here.

Explainability requirements from the perspective of 
the target group(s)
In general, it can be assumed that domain experts must 
be convinced of the quality of the model, at least in the 
long term. Due to the corresponding responsibility for 
decisions that may have to be made under time pres-
sure, the determination of explanations should not take 
too long; ideally, it should even be recognizable for the 
target group in which operating points the validity of 
the model is particularly good or particularly poor. For 
users with an affinity for AI, it can also be an important, 
or even essential, requirement to be able to understand 
in detail how a model was generated. Furthermore, 
confidence values provided should, if possible, also take 
into account statistical error distributions, if these are 
available (explainability of individual decisions). With 
regard to the target group, most likely engineers, and 
possibly given error distributions, statistical confidence 
indicators such as effect or signal strengths are particu-
larly suitable. 

Finally, an explainable AI system must enable intui-
tive and efficient interaction so that users can at least 
validate its behavior on a random basis or, desirably, 
even modify and improve the underlying model. The 
latter can be done in a minimal variant, e.g. by adaptable 
thresholds, or it can be realized by a designated human-
in-the-loop approach. In the latter case, which involves 

a subject matter expert as a further “data source”, the 
explicit goal is to make the system more explainable 
on the basis of human-machine interaction and, at the 
same time, to allow it to continue learning through the 
input of experts.

An additional, at least desirable property of explainable 
AI is that domain experts can also receive alternative 
“explanation concepts” if required and preferred. A 
simple example would be that, when generating expla-
nations for components, the individual explanation is 
based on their color instead of their supposedly compli-
cated type designation.   

Explanation strategies
If statistical confidence values and the consideration of 
additional statistical information are explicitly required 
according to the explanatory power requirements of 
domain experts, appropriate machine learning models 
must be used. Although suitable validation strategies 
(e.g. “cross-validation”) can be used to determine the 
predictive quality of each model on the basis of a given 
data set, supposedly available additional statistical 
information, such as occurrence probabilities of events, 
can only be comprehensively taken into account by 
certain types of models. If such additional information 
is available and if it is to be used explicitly to detect 
anomalies and to determine statistical confidence 
values in order to increase comprehensibility or at least 
plausibility, probabilistic models, e.g. Bayesian networks, 
are particularly suitable. Bayesian networks can be 
employed to represent probabilities of events and their 
interdependencies.

Convincing domain experts that AI models behave “cor-
rectly” is critical to the adoption of AI products designed 
to provide reliable condition monitoring of expensive 
machinery. For this reason, the target persons should be 
provided with the opportunity to perform a qualitative or 
quantitative model validation, e.g. via simulation, before 
deployment is considered. 

However, it is advisable to let domain experts them-
selves choose respective scenarios during such a 
pre-validation, since “typical” scenarios chosen by the 
AI system provider could possibly be perceived as too 
selective. There are different ways to realize this in 
practice. A comparably simple possibility is to provide a 
suitable illustration of the input-output relationships of 
the original model.
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In many cases, however, it is necessary to first make the 
basic, qualitative mechanisms of a model comprehen-
sible to the domain experts by illustrating intermediate 
results. In these cases, it can be useful to provide the 
target group with a white-box surrogate model generat-
ed on the basis of evaluations of the original model and/
or real operating data. In the simplest case, decision 
trees can be used for example. This surrogate approach 
has the advantage that domain experts can interpret de-
cision boundaries and intermediate results more easily 
and quickly. Naturally, this is even more significant if the 
surrogate model is mechanistic, i.e., if it was created on 
the basis of physical laws anyway. Respective approach-
es via adaptable mechanistic surrogate models can 
be costly. However, model structures that allow for a 
derivation of suitable surrogate models might be avail-
able from the engineering process of the considered 
machines or plants (or similar ones). The parameter ad-
aptation of the surrogate models to individual machines 
can then be carried out by means of curve fitting, i.e. 
parameter estimation.

The effort required to generate or adapt mechanistic 
models can pay off especially when machines and 
plants are very similar and process sequences are 
sufficiently easy to transfer. One example is turbo-com-
pressor systems, which can vary enormously in size but, 
regardless of this, all function very similarly from a phys-
ical point of view and always consist of similar submod-
ules. Another advantage of such mechanistic surrogate 
models is that cases of damage or operating data in 
unusual or potentially dangerous operating points can 
be determined by means of simulation if there is a lack 
of corresponding information or data. On the one hand, 
this can help to increase the process understanding of 
domain experts (helpful for training courses, etc.), on the 
other hand, additional data can be generated artificially, 
if necessary, for training the AI model (Bayesian net-
works in this case). 

An alternative to meet the requirements of domain 
experts for model explainability even more compre-
hensively is to involve users directly in the generation 
of models and the associated explanatory approaches. 
Here, there are first promising approaches of corre-
sponding machine learning methods on the basis of 
knowledge graphs. Currently, approaches are being 
tested20 that combine inductive logical programming 

20 RAKI project of the BMWK technology programme Smart Data Economy 
(https://raki-projekt.de/)

and reinforcement learning methods for the first time in 
order to obtain comprehensible machine learning meth-
ods that also include a so-called “human in the loop” 
concept. With appropriate methods, it should soon be 
possible for industry experts to interact with the AI sys-
tem using natural language and thus - based on existing 
examples of machine anomalies and “normal” machine 
behavior - to define for themselves which explanations 
are suitable for them. In this way, transparent models 
can be generated, which can additionally be used to ex-
plain to the users of a corresponding condition monitor-
ing system by means of natural language explanations 
why a system is in a permissible or impermissible state.

The most important task of the domain expert in 
this human-in-the-loop concept is actually to provide 
comprehensible designations for individual classes 
such as machine elements (e.g., “engine compartment”, 
“assembly line”) or tools (e.g., “Allen key”, “screw”). At 
the same time, with this approach, the domain expert 
is not necessarily needed to provide explanations (or to 
provide the actual condition monitoring functionality). If 
enough data is available in an appropriately processable 
form, processing can also be automated. However, auto-
mated assignment of class labels may limit the ability to 
generate natural language explanations that are clearly 
understandable to humans. Alternatively, these class la-
bels could be obtained from additional external sources 
of information, if available.
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USE CASE
AI-supported machine condition monitoring  
at a glance

TYPE
Anomaly detection for the purpose of maintenance planning  
(decision support)

CRITICALITY High (functional safety, economic efficiency)

DATA TYPES
Numerical data (sensor data, operational parameters or settings), text data 
(error codes, machine log data)

TYPICAL KI MODELS

APPROACH 1:
Bayesian Networks

APPROACH 2:
Machine learning based on knowledge graphs

(MAIN) GOAL GROUPS   
and respective overall objectives  
for the use of explainable AI

DOMAIN EXPERTS  (maintenance teams): check plausibility of causal rela-
tionships (“find” causal relationships); determine confidence (robustness, 
stability); improve interaction possibilities

DEVELOPERS: 
Determine confidence (robustness, stability); improve interaction possibili-
ties

CONCRETE REQUIREMENTS  
for explainability

DOMAIN EXPERTS and DEVELOPERS:  
Assessment (plausibility, statistical evaluation) of the quality of the  models 
(concerns partial aspects of global explainability); assessment of the 
 individual decision (local explainability)

SUITABLE  
EXPLANATION STRATEGIES

APPROACH 1:
• Use and fitting of surrogate models (model plausibility),
• Extraction of statistical quality parameters (Bayesian statistics)

APPROACH 2:
Natural language explanations (knowledge graphs)
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5.2.2 Use case: AI-supported process 
 control in the process industry 

As early as the 1980s, methods were used in the 
chemical industry, for example, which can certainly be 
described as learning systems and whose advantages 
are only now being recognized in other industries. Ex-
amples include statistical filtering methods and mod-
el-predictive controllers. At the same time, the possible 
applications of data-driven AI methods in the process 
industry have only been investigated in greater depth in 
recent years. Industry experts expect that there is still 
untapped potential for increasing the efficiency of pro-
cesses and plants, for example through the evaluation 
of image and video data or improved human-technology 
interaction.

In this context, the explainability of AI systems has a 
key role to play in enabling data-driven AI systems to be 
used in safety-critical application fields in the process 
industry, since both approval and acceptance depend 
on how well humans can comprehend and monitor the 
decisions made by AI systems.

To illustrate this, a use case of an AI-supported process 
control is described below. Data-driven AI methods are 
to be used in the context of “state detection” and for the 
determination of “optimal operational trajectories”. The 
state determination (or detection) and the downstream 
control (determination of optimal operating sequences) 
are two closely related sub-applications that contrib-
ute equally to an AI-supported process control. In this 
context, state determination is generally a prerequisite 
for the determination of optimal operational trajectories. 
Only by a respective concatenation and execution in 
“real time” actual manipulated variables can be set and 
thus a process control be realized: 

• Condition detection via image data: 
In the complex dynamic systems of the process 
industry, an essential subtask of process control is to 
obtain sufficient knowledge about the states of the 
system. Many of such states are often not directly 
measurable, but in the best case merely “observable” 
(i.e., roughly speaking, states can be estimated from 
the measurable variables if a sufficiently good model 
of the system is available). Elaborate sample analy-
ses, for example to determine the exact proportional 
composition of material flows, are expensive and 
provide results with a time lag as well as with a much 
lower repetition rate than sensors. An inexpensive, 
yet rarely used, possibility to obtain additional data 
at high sampling rates is image data, which can be 
used, for example, to detect certain unwanted effects 
such as air bubble formation. In order to extraxt 
information from image and video data about state 
variables that are difficult to measure and which are 
subsequently used for process control, AI-based 
models and methods can be used. 

• Determination of optimal operational trajectories: 
Finding optimal trajectories for steering plants in the 
process industry through start-up and shutdown pro-
cesses is often a very challenging task. In addition to 
typically complex system dynamics, a large number 
of uncertainties, e.g. measurement errors or un-
certainty regarding estimated quantities, as well as 
potentially critical constraints such as temperature 
or pressure limits must be explicitly taken into ac-
count. A particular challenge for robust model-based 
control are unforeseen, “discrete” events, such as 
switching operations. 
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In principle, an autonomous system can be assumed 
here, which has analysis, planning and control tasks. 
The criticality of the application must be rated as very 
high, since potential accidents can not only cause enor-
mous economic damage, but also pose a risk for the 
health of local residents and the environment due to the 
processing of hazardous substances.

Target groups and overarching goals for the use of 
explainable AI
There are three target groups that must be consid-
ered when designing an explainable AI system for this 
use case. These are, first, the responsible authorities, 
without whose approval an AI-supported system 
cannot be used for process control. Secondly, there are 
the domain experts (operating personnel), who must 
be appropriately trained by the operator company in 
order to play their part in the safe operation of a plant. 
The third group is the developers responsible for the 
implementation of the overall process control. In this 
use case, these developers must also have sufficient 
domain expertise to be able to develop systems that are 
guaranteed, in accordance with the state of the art, not 
to violate relevant goals (health, environment, economic 
efficiency, etc.) during operation of the plant.

The most important overarching goal to apply explaina-
ble AI in the given use case is to be able to permanently 
check the susceptibility of the AI system to all possible 
kinds of malfunctions, especially in the operational 
phase (determine confidence), in order to be able to initi-
ate emergency measures if necessary. In this context, it 
is essential that the domain experts with their individual 
understanding of the process are enabled to compre-
hend possible problems sufficiently comprehensively 
(“finding” causal relationships) and at the same time 
sufficiently quickly (increasing information gain/simpli-
fication) so that they can, if necessary, make quick and 
targeted adjustments on this basis (improving interac-
tion possibilities).

Explainability requirements from the perspective of 
the target group(s)
For approving authorities, an AI-based component 
must be a part of a protection and emergency concept 
the moment it represents or influences a safety-rele-
vant module. Since this is the case here, respective AI 
systems must be explainable with regard to the mech-
anisms of action, comprehensible with regard to risk 

minimization and assessable for testing with regard to 
the effectiveness of the safety concepts.

Even if the approval requirements for protection and 
emergency concepts do not specify any AI-specific 
requirements21, approving authorities consequently 
require both decision and detailed and comprehensive 
model explanations (local and global explainability). 
Models and individual decisions must therefore be po-
tentially verifiable - and thus explainable - for approval.

The operator company of a plant is responsible for safe 
operation. It must enable this safe operation by training 
the operating personnel and by suitable technical meas-
ures. Since the domain experts (operating personnel) 
thus have a central role in this safety concept, they must 
at least be provided with decision explanations (local 
explainability) in order to identify potentially safety-criti-
cal events and thus avert alleged accidents.

The task of the developers of process control is to devel-
op systems that do not violate relevant protection goals 
during plant operation. As soon as AI-based processes 
touch upon safety aspects, local and global explainabili-
ty are indispensable in order to integrate the AI modules 
in the overall system.

For this use case, however, another significant require-
ment arises. Since the real-time requirement must 
be understood as a general requirement of this auto-
mation-related use case, this naturally also transfers 
to explanations that must be made available to the 
corresponding stakeholders “in time” so that these can 
also act sufficiently fast if necessary (e.g. initiate safety 
measures or a shutdown of a subprocess).

Explanation strategies
How concrete explanatory strategies can be designed 
for this application is currently still being investigated. 
However, several promising approaches are already 
emerging.

21 Approval requirements are not specific to AI today in Germany. The 
Federal Imission Protection Act (“Bundes-Imissionsschutzgesetz”), the 
Federal Water Act (“Wasserhaushaltsgesetz”) or the Hazardous Incident 
Ordinance (“Störfall-Verordnung”) make no difference as to whether a 
(self-) learning system is used or not. However, mandatory requirements 
arise when an AI system directly or indirectly influences protection goals.
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In order to meet the basic requirements of domain 
experts for decision explanations (local explainability), 
different approaches are considered fundamentally 
suitable for state detection via image data. For this pur-
pose, post hoc explanation tools such as LIME, CAM 
and Guided Backpropagation have been preferred so 
far and their suitability for the use case has been ana-
lyzed accordingly. With these tools, interpretable expla-
nations can be generated on the basis of image data 
for people with the corresponding prior knowledge, and 
biases can be detected comparably well. These tools 
are also considered to be sufficiently mature to meet 
the requirements of the domain experts for monitoring 
the automated state detection from images.

The requirement of very detailed comprehensibility of 
the decision-making processes, i.e. having to provide 
model and decision explanations (global and local 
explainability), predominantly concerns the second 
challenge in this use case: the determination of 
optimal operational trajectories. As explained above, 
this requirement arises from the perspective of the 
developers and the approving authorities. According 
to industry experts, there is every indication that the 
development of an AI system based solely on black-
box models has no realistic chance of approval. The 
approval of any process control system requires the 
consideration of a comprehensive, approvable protec-
tion concept, for which the detailed comprehensibility 
of the algorithmic systems is considered indispensable  
(see also the following section 5.2.3).22 

Consequently, the provision of classical post hoc 
explanations offered by analysis tools such as LIME 
is not considered sufficient by industry experts for the 
determination of optimal operating procedures.

In the context of the research project23, which specif-
ically addresses this use case, an implementation via 
the development of suitable, hybrid methods is aimed 
at. Simplified, within a corresponding hybrid AI, the 
white-box components could guarantee the fulfillment 

22 In the event of liability-relevant accidents or incidents, the public prose-
cutor would examine whether the state of the art for the prevention of 
protection violations was taken into account, which in this field of appli-
cation is oriented towards traditional and interpretable measurement and 
control technology as well as white box models. If necessary, significant 
economic consequences may arise for the responsible companies if a 
failure with regard to the protection concept is identified. In the event 
of an accident or incident that occurs despite operation in conformity 
with the approval and despite compliance with the protection concept 
relevant to the approval, the authorities granting the approval would be 
responsible.

23 http://keen-plattform.de/

of the safety requirements, while the black-box compo-
nents “supply” sufficiently verified information.

For example, an initially obvious approach would be 
to demand that only economically significant, but not 
safety-relevant manipulated variables be determined or 
calculated on the basis of black-box models. However, 
since in safety-critical systems all actuators interacting 
with the overall system must be regarded as potentially 
critical, it is fundamentally necessary to permanently 
(or at least regularly) check all effects of calculated 
manipulated variables internally for safety risks.

Potential safety risks that cannot be tackled by auto-
mated and always effective countermeasures must 
instead be adequately prevented in the operational 
phase by appropriate monitoring by domain experts 
(or developers) supported by a suitable human-ma-
chine interaction. In many situations, such interaction 
with human decision makers is quite feasible. In these 
cases, certain model adjustments that are economical-
ly promising but may pose a safety risk must be set to 
“pending” until they are verified by a human expert and/
or simulation (e.g., significant variations of setpoint val-
ues recommended by the AI system). While such mod-
el adjustments may improve the operation of a process 
control system from an economic perspective (e.g., 
increase production throughput), the risk of undetected 
safety hazards (e.g., sudden undetected data bias that 
distorts state determination and thus poses an incal-
culable risk to process control) must be minimized. In 
certain scenarios, and with appropriate precautions 
in place, it is conceivable to delay the deployment of 
appropriate model adjustments until a human expert 
gives the approval. In the meantime, non-updated mod-
els could be used (as long as this does not jeopardize 
the protection goals), or traditional methods could be 
relied upon, e.g., state estimation using probabilistic 
filtering methods (e.g., Kalman filtering methods) to 
estimate non-measurable states.

However, given the degree of autonomy, it is necessary 
that domain experts are notified by the system when an 
appropriate decision has to be made. It is also conceiv-
able that a course of action is suggested on the basis of 
past decisions.

With regard to the determination of optimal operating 
trajectories, the approach pursued here is to use AI-
based methods to generate suitable “hybrid” models 
from plant and simulation data. The concept of a “hy-
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brid” model means that white-box and black-box model 
components are combined in order to benefit both from 
the deterministics of mechanistic models and from the 
pattern recognition of data-driven approaches. From 
the resulting models, optimal control trajectories can be 
derived by means of modern control methods - in par-
ticular model predictive control.24 These hybrid models 
have to be adapted and re-optimized during operation 
(“online”) and monitored with regard to validity and per-
formance in case of disturbances in the plant. Here, the 
explainability - both of the recommendations and of the 
adaptations through re-optimization - plays a major role 
for the trust in the resulting recommendation system. 

Finally, industry experts expect that such a hybrid AI 
system must also meet the requirements of being able 
to provide suitable explanations “in time”. This is be-
cause the core functionality of the overall system must 
also satisfy real-time requirements and the associated 
information content (of the explanation) must there-

24 Model-based variant of a reinforcement learning procedure that gener-
ates a control strategy or “control policy”.

fore also be able to be processed within certain time 
limits - either by a computer system, e.g., by means of 
simulation, but also by persons if required. In the latter 
case, system-based support of the responsible person 
is perspectively inevitable here, although the target 
group of domain experts is well acquainted with process 
control systems (or can be made familiar with them). 
The explanations must be aligned in terms of their level 
of detail to the expertise of the target persons and to the 
time constraints of the users and/or the overall process. 
By using the black-box components for somewhat less 
safety-critical and time-critical tasks, the significant 
demands on human “decision makers” and human-ma-
chine interaction in this use case can be reduced. As a 
result, it becomes possible for human decision-makers 
to react to events in the response times achievable for 
them and to make a major contribution to ensuring 
that an AI-supported process control behaves appro-
priately in terms of safety and possibly even learns 
 incrementally.
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USE CASE
AI-supported process control in the process industry
at a glance

TYPE
There are two subtasks 
(1) AI-assisted analysis (state detection via image data),
(2) AI-supported feedback control (optimum operating procedures)

CRITICALITY Very high (potential of accidents/incidents)

DATA TYPES Numerical data (sensor data, operating parameters), image data

TYPICAL AI MODELS 

For (1): Neural networks
(explainability deficits / “black box”)

For (2): reinforcement learning (model predictive control) based on
hybrid models  
(at least largely explainable)

(MAIN) GOAL GROUPS   
and respective overall objectives  
for the use of explainable AI

DOMAIN EXPERTS (operating personnel) and DEVELOPERS (process man-
agement): Determine confidence (robustness, stability, vulnerability); check 
plausibility of causal relationships (“find” causal relationships); increase 
information gain (simplification); improve interaction possibilities (especial-
ly for domain experts).

APPROVING AUTHORITIES: 
Verification of “comprehensibility” and protection concept 

CONCRETE REQUIREMENTS   
for explainability

DOMAIN EXPERTS (operating personnel):
Explainability of individual decisions (local explainability)

APPROVING AUTHORITIES and DEVELOPERS (process control): Single deci-
sion explanations and model explanations (local and global explainability)

SUITABLE

EXPLANATION 

For (1): post hoc explanations, e.g. LIME

For (2): Integration of the black-box model components by means of hybrid 
modelling
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5.2.3 Regulation and certification in the 
manufacturing industry

In the manufacturing industry, it can be observed that 
AI applications are increasingly being integrated into 
robotic systems or production plants. In particular, com-
puter vision or AI-supported data analysis approaches 
are finding their way into the manufacturing industry to 
complement the algorithmic components that previous-
ly operated on a more rule-based basis.

The Machinery Directive 2006/42/EC of25 of 17 May 
2006 is the central standard of the European Union (EU) 
for the CE certification of such production machinery 
and systems. It regulates compliance with the principles 
for the safety of technical systems and thus provides 
the framework for approval - initially irrespective of 
whether or not AI elements influence the behaviour of 
the machine. The Machinery Directive thus provides a 
framework for detailed technical rules. For example, its 
Annex I contains the general health and safety require-
ments to be observed in risk assessment and reduction. 
The central objective is to define the functional design 
of the machine for the area of application and for its 
entire service life, so that persons are not endangered. 
This includes, for example, specifications for handling, 
control and maintenance of the respective system. Par-
ticular attention is paid to protective measures against 
mechanical hazards. In addition, the directive stipulates 
which information material on the machine and the 
associated protective measures must be available and 
in what form.

Up to now, the Machinery Directive has remained 
unaltered despite the technological development and 
the fundamental safety and usage principles of mecha-
tronic systems based on defined, deterministic control 
and regulation concepts have endured. (Remark: the 
editorial deadline of the original German version of the 
study predated the proposal of the EU commission for a 
regulatory framework on machinery products published 

25 Directive 2006/42/EC of the European Parliament and of the Council of 
17 May 2006 on machinery, available online at: https://eur-lex. europa.eu/
eli/dir/2006/42/oj

on april 21st 2021). However, a systematic evaluation of 
the directive in 2018 conducted by the European Com-
mission indicated a need for future adaptations.

A survey of numerous stakeholders from the mechan-
ical and plant engineering sector is part of this evalua-
tion. It showed that the increased use of IoT26 and AI in 
mechanical engineering products is expected to lead to 
a paradigm shift towards interconnected, autonomous-
ly deciding and even learning products of mechanical 
engineering. (European Commission 2018). In the case 
of using black-box models, the behaviour of the systems 
cannot be predicted with sufficient certainty. By embed-
ding such models in technical systems, decisions of 
AI systems affect physical actions, even if only partial 
functionality is supported by AI. For example, an AI 
module for image recognition can contribute to navigate 
a robotic arm. However, misclassifications of the AI 
could theoretically result in incalculable safety risks, e.g. 
for human operators, for the processing of hazardous 
substances or for the surrounding infrastructure.

If, however, AI models in the manufacturing environ-
ment continue to develop during operation (“training on 
the job”), it may be extremely difficult or impossible to 
comprehend or trace decisions to a sufficient extent. If 
an AI product may pose a potential hazard to persons 
and no alternative safety precautions are (or can be) 
taken, certification according to the requirements of the 
current Machinery Directive is currently only conceivable 
if dedicated explanation strategies or tools are used. 
From a regulatory perspective, however, it is still largely 
unclear how to deal with AI systems that are (perma-
nently) retrained in safety-relevant applications.

AI black-box systems that have already been pre-trained 
can also pose an obstacle to certification, especially if 
they influence physical actions or other safety-relevant 
functions of the system. If such influences are not com-
prehensively controllable and traceable, a risk for the 
safety of the overall system remains. Particularly when 
interacting with humans, such AI-supported systems 

26 IoT = Internet of Things
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may therefore pose special safety risks that are not 
addressed by the previous certification requirements of 
the Machinery Directive.

It is still under discussion whether an adaptation of the 
Machinery Directive itself is necessary, which could be 
approached either by including ethical rules for auton-
omous systems (“robot laws”) or by expanding safety 
regulations. Alternatively, technical standards may also 
be sufficient. However, the basic principle is that ma-
chines “should not enter into an uncontrolled state that 
would pose a danger to the operator or to uninvolved 
third parties”. In addition to general safety devices and 
measures, explainable AI algorithms or corresponding 
warning systems can also make a significant contribu-
tion to facilitating human supervision and thus signifi-
cantly reducing the aforementioned risks. It is therefore 
quite conceivable that future directives for the approval 
of learning systems take approaches into account 
that make use of explainable AI models and methods. 
However, for regulation-compliant system development 
and subsequent conformity assessment, it would be ad-
vantageous if the requirements for the notifications and 
explanations of the machine operators were specified 
as precisely as possible.  

In the process industry, where hazardous substances 
are often processed under high pressure levels, addi-
tional regulatory requirements beyond the Machinery 
Directive must be taken into account (VERBAND DER 
CHEMISCHEN INDUSTRIE e.V. 2012). The applicable 
Hazardous Incident Ordinance27 (SEVESOIII Directive) 
of the Federal Immission Control Act consequently 
prescribes high standards for the certification of pro-
cess safety. Production concepts, for example, must be 
fundamentally comprehensible. Furthermore, it must be 
verifiable that the actual implementation corresponds 
to the planned concept. For the use of AI in this context, 
it must be ensured that the decisions of the overall 
system are sufficiently transparent, repeatable, compre-
hensible in detail and correctable if necessary.

27 Twelfth Ordinance on the Implementation of the Federal Immission 
Control Act, available online at: http://www.gesetze-im-internet.de/ bim-
schv_12_2000/index.html

The German Institute for Standardization (DIN) has been 
pursuing a dedicated AI roadmap for standardization 
since 2020 (Wahlster and Winterhalter 2020). Industrial 
automation is a key topic. In addition to software stand-
ardization for industrial applications, the requirements 
for learning technical systems are also considered. On 
the identified challenge of “explainability and validation”, 
the VDE has already developed the technical Rule E 
VDE-AR-E 2842-61-1:2020-0728 was published. It de-
scribes the terminology and basic concepts of explaina-
ble AI. Building on this, quality criteria and reproducible, 
standardised test procedures for reliable AI systems 
are to be developed in the national implementation 
programme “Trusted AI”. It is not yet possible to predict 
when they will be applied to technical systems (Wahlster 
and Winterhalter 2020).

As a result, the same safety regulations currently apply 
to AI-supported systems as to conventionally controlled 
products, even though initial standardization efforts are 
underway. This means that there are liability regulations 
for the manufacturer that correspond to the product 
liability directive.29 In particular, there are no recognized 
processes for the certification of AI-supported systems. 
This is especially true for systems that significantly 
change their behavior during operation without this 
change being subject to human supervision, so regu-
lations currently exclude learning systems of this type. 
Even pre-trained AI systems that do not evolve may only 
be used under controllable conditions. Explainable AI al-
gorithms are thus a basis for implementing learning and 
decision-making processes of AI systems in a compre-
hensible and thus controllable manner and for signifi-
cantly expanding the spectrum of certified applications 
for technical systems. 

28 VDE Application rule E VDE-AR-E 2842-61-1:2020-07, Development and 
trustworthiness of autonomous/cognitive systems - Part 61-1: Terminol-
ogy and basic concepts, https://www.vde-verlag.de/ norms/1800574/e-
vde-ar-e-2842-61-1-application-rule-2020-07.html

29 Law on Liability for Defective Products/Product Liability Directive, availa-
ble online at: http://www.gesetze-im-internet.de/prodhaftg/ index.html
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5.3 Overall consideration of the use 
cases
When comparing the four use cases, it is first noticeable 
that two general motivations for the use of explainable 
AI are considered important in all four cases, namely 
to check the plausibility of causal relationships (“find” 
causal relationships) and to determine confidence. At 
the same time, however, there are very individual motiva-
tions for the use of explainable AI: e.g., increasing the ac-
tual information gain through explainable AI or improv-
ing the interaction between humans and AI systems:

• In the use case for image analysis of histological tis-
sue sections, the general motivation to “find“ causal 
relationships is clearly the top priority for the domain 
experts (pathologists). In this case, the medical 
experts want to see at a glance why a specific clas-
sification decision was made with regard to a tumor 
detection (local explainability). In the best case, the 
pathologists can then trace the intermediate steps 
that led to the decision. Subsequently, the experts 
can decide whether the AI output should be taken 
into account in the medical diagnosis or discarded. 
With regard to approval processes, experts also 
assume that at least individual decisions on individu-
al patients must be comprehensible for physicians30. 
A solution with post hoc explanation tools such as 
LRP or LIME visually highlighting image areas for the 
domain experts are pursued here as an explanation 
strategy. These post hoc explanation tools are also 
used by AI developers whose primary goal is to test 
fairness (detect data bias) or to determine confi-
dence.

• The overarching goal to verify the plausibility of 
identified relationships (“find” causal relationships) is 
also the core motivation for the use case for machine 
condition monitoring: Domain experts (in this case 

30 The first approved products for AI-supported radiological image analysis 
exist on the market, which gives an indication that the explainability 
of individual decisions (local explainability) was already sufficient for 
approval, at least in individual cases.

engineers) first want to be able to investigate the dis-
covery of possible anomalies by an AI system before 
they initiate any maintenance measures. An absolute 
minimum requirement in this case is therefore the 
provision of explanations for individual decisions 
(local explainability). Since typically no official 
approval is required for such AI systems, there are 
also no regulatory requirements on how explanations 
should be designed. However, maintenance experts 
often have to make decisions of great importance 
(in terms of safety and economic efficiency) under 
time pressure. Therefore, the explainability of model 
action mechanisms (global explainability), which en-
ables pre-assessment of model reliability by domain 
experts, is usually critical to whether an AI system is 
ultimately used for condition monitoring in practice. 
Two different approaches are pursued as explana-
tory strategies for the use case. On the one hand, 
Bayesian networks and a surrogate model are used in 
order to provide users with intrinsic statements about 
the probability of events occurring and an illustra-
tive model that can be simulated flexibly. A second 
approach is based on a machine learning methodol-
ogy based on knowledge graphs. Natural language 
explanations are provided, which the user her- or 
himself can adapt to the individual requirements. The 
interaction between humans and AI systems is im-
proved by this approach, which can also be a general 
motivation for users to use explainable AI.

• The overarching goal of increasing the information 
gain of the domain experts is the central motivation 
for the use case of medical text analysis of medical 
reports. In this context, the concrete, case-related 
indications as to why a particularly close proximity 
between patients’ disease progressions was detected 
are indispensable as key information for the medical 
staff. This is the only way for medical experts to effi-
ciently assess whether a criterion that was decisive 
for the classification of the AI is either plausible or 
not medically meaningful. For this purpose, a system 
that is to support this decision must be able to justify 
individual case decisions in terms of content (local 
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explainability). The basis for providing explanations 
are nominal black-box models (neural networks), 
which are supplemented by prototypes or external 
knowledge collections. Consequently, the resulting 
model itself can provide medically comprehensible 
reasons for individual decisions by visually highlight-
ing relevant passages 
in medical reports or 
external publications for 
the target group.

• In the use case of 
AI-supported process 
control, there are differ-
ent motivations for the 
use of explainable AI. 
However, the overarch-
ing goal of determining 
appropriate confidences 
is particularly crucial, 
especially with regard 
to the effects of indi-
vidual decisions for the 
complex overall system. 
Undetected errors in the 
visual state recognition or susceptibility to distur-
bances and bias in the “hybrid” models can, in case of 
doubt, mean incalculable risks for the robust and sta-
ble control of the chemical plants. Therefore, this use 
case also reveals the most far-reaching explainability 
requirements compared to the others. Beyond the 
explainability of individual decisions (local explain-
ability), the detailed explainability of model mech-
anisms (global explainability) is also required here. 
The approach taken is to create suitable “hybrid” 
models from mechanistic models and simulation 
data, as well as image and sensor data, which com-
bine white-box with black-box components to create 
self-explanatory plant models. Advanced process 
control approaches could then take advantage of the 
plant models improved by machine learning for the 
“on the-job” generation of time- or energy-optimized 
operational sequences.  

Of all the use cases considered, the provision of 
model explanations (global explainability) is a 
strict approval requirement only for AI-supported 
process control. Although technically experienced 
persons are available to supervise a corresponding 
AI system, it is impossible for them to check every 

individual action of the 
overall system or process 
control. Instead, responsible 
individuals must be actively 
made aware that decisions 
are to be made by them. In 
particular, if safety-relevant 
user decisions are not taken 
(in time) by the specialist 
personnel, the system 
must independently initiate 
alternative measures in ac-
cordance with a protection 
concept to be defined.

Requirements for the form 
and scope of explanations, 
as well as for the amount 
of time that a generation of 

explanations may take, are highly application-specific. 
Explanations must be adapted to the expertise of the 
target persons and to the time constraints of the users 
or of the process as a whole.

This requires explanations that must be available at the 
same time or at least shortly after the actual decision or 
recommendation of the AI system and must also meet 
the - sometimes conflicting - requirements for explana-
tions: simple, brief and comprehensive.

Further details and references on the approaches used 
in the use cases can be found in Chapter 3 and in the 
Glossary in the Appendix A. Excluded from this is the 
Machine-learning approach based on knowledge graphs 
and the hybrid modelling approach, both of which are 
still too much in the research stage to be discussed in 
detail in this study.  

Requirements for the form and 
scope of explanations, as well as for 
the amount of time that a generation 
of explanations may take, are highly 
application-specific. Explanations 

must be adapted to the expertise of 
the target persons and to the time 
constraints of the users or of the 

process as a whole.
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6 PRACTICAL FIRST STEPS: ORIENTATION GUIDE 
FOR SELECTION OF EXPLANATORY STRATEGIES 
In the following, recommendations for the selection of 
explanatory tools are presented, which were derived 
from the interviews with experts, literature research, the 
results of the benchmark tests from the study conduct-
ed by the “KI-Fortschrittszentrum ‘Lernende Systeme 
und Kognitive Robotik’” of Fraunhofer IPA (Schaaf et al. 
2021), and information provided by the Bosch Center for 
Artificial Intelligence. An overview of the tools and the 
underlying advantages and disadvantages can be found 
in Chapter 3.

Before selecting a suitable explanation tool, the design 
criteria for the target system must be taken into account. 
These considerations should include, in particular, the 
target groups of the explanation, the types of underlying 
data, and the selected AI model that makes the deci-
sions. 

With regard to the selection of the AI model, it should (in 
general) always be investigated whether it is possible 
to use a less complex, 
thus more compre-
hensible model for the 
solution of the initial 
problem that still meets 
the specific require-
ments. Regarding 
transparency, ideally, 
a white-box model is 
used. This is mainly 
because post-hoc ex-
planations for decisions 
of black-box models 
can be problematic, as 
they try to simplify how 
the model works, but 
cannot represent it in 
its completeness. It follows that these explanations are 
not always completely accurate and are rather approx-
imations that can also lead to errors in interpretation 
(Rudin 2019).

White-box models and AI models that themselves pro-
vide both decision and explanation offer the advantage 
that no additional analysis tool or surrogate model is 
needed to explain decisions. Rather, the original mod-
el itself is self-explanatory or it provides explanations 
along with the decision. Hence, there is no need to deal 
with the functioning of an additional analysis tool re-
sponsible for the explanation. The employment of white-
box models, additionally, can enable the user to achieve 
a deeper understanding of the AI algorithm itself.

The majority of the interviewed experts considered 
most of the post hoc explanation tools (discussed in 
Chapter 3) only partially suitable for providing individ-
ual explanations of decisions for AI users, e.g. domain 
experts. The tools have the disadvantage that their 
handling is not intuitive for users, so that the correct 
interpretation is not automatically assured. In general, 
several experts expressed in the interviews conducted 
for the study that intuitive explanatory strategies must 

also be made available for users 
without AI expertise. Counter-
factual explanations are a good 
example of this. Similarly, many 
experts considered surrogate 
models to meet the require-
ments of providing intuitive 
explanations - despite the inev-
itable discrepancy between the 
initial model and the surrogate 
model. 

For example, the decision crite-
ria can be read directly from the 
decision trees frequently used 
as surrogate model. The use 
of prototypes is also advisa-

ble in this respect in order to provide content-related 
explanations for decisions, as this approach also makes 
decisions plausible in a comparably intuitive form. Nev-
ertheless, corresponding explanation strategies not only 

With regard to the selection of the   
AI model, it should (in general) 

 always be investigated whether it 
is possible to use a less  complex, 
thus more comprehensible  model 

for the solution of the initial 
 problem that still meets the specific 

 requirements.
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make decisions of AI systems more comprehensible for 
domain experts. Also, AI developers can benefit from 
their use and gain new insights into the decision-making 
process of the model in order to improve the quality of 
the AI systems. 

For AI developers, both the generation of decision expla-
nations and model explanations can play an important 
role. Some experts see the discussed post hoc methods 
- with the exception of counterfactual explanations - as 
mainly suitable to support AI developers in improving 
algorithms. When using black-box AI, the methods 
Integrated Gradients (for neural networks) and SHAP 
(model-agnostic) are currently particularly well suited. If 
a fast approximation is sufficient, DeepLIFT can be used 
instead of Integrated Gradients. For the application of 
SHAP on multi-layered models with a high number of 
parameters or for the processing of high-dimensional 
data, it must be examined whether the runtime is still ac-
ceptable. In general, it should be noted that the usability 
of the methods strongly depends on the respective use 
case and it should be examined individually to what 
extent they meet the individual requirements. Assess-
ment criteria of individual methods are often subjective 
and due to user preferences. However, when selecting 
a specific method, its functionality and disadvantages 
should be well known. As a further recommendation, 
it was noted that AI developers should not rely on one 
method only. It is advisable to test several methods in 
order to be able to recognize and circumvent problems 
of a method that may not be immediately apparent for 
the specific application at an early stage.

In the study conducted by “KI-Fortschrittszentrum 
‘Lernende Systeme und Kognitive Robotik’” of Fraun-

hofer IPA (Schaaf et al. 2021), various methods were 
investigated e.g. in terms of runtime performance and 
fidelity of the explanations31. For application to image 
data, the Integrated Gradients and LIME methods were 
rated best because of their fidelity to the model. SHAP 
achieved less good results in this regard. However, the 
two first mentioned approaches need more time to 
generate explanations than other methods, for example 
LRP. This result shows a difference to the assessments 
of the experts, who rated Integrated Gradients (in terms 
of runtime) as well suited for image data.

When applied to tabular data, LIME and SHAP achieved 
very similar results. Counterfactual explanations stand 
out because model fidelity is always given with this ap-
proach. However, the generation of explanations takes 
a relatively long time. The surrogate model (here: a gen-
erated decision tree) also performed well - particularly 
with regard to runtime performance (Schaaf et al. 2021).

To support the selection of a suitable explanatory tool, 
the described recommendations were summarized 
as an “orientation tree” (see Figure 9). When using it, it 
should be noted that only a selection of already well-es-
tablished explanatory strategies and tools was consid-
ered and that the information is also based on expe-
rience with concrete use cases. The “orientation tree” 
shown is intended to represent the findings obtained in 
the course of the study in a simplified manner and to 
provide rough orientation when selecting explanatory 
strategies and tools.  

31 Fidelity (of reproduction) indicates the extent to which the explanation 
reflects the actual behavior of the model.
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The orientation tree

Figure 9: The orientation tree supports the selection of suitable explanation tools (XAI tools)
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7 CHALLENGES AND NEEDS FOR ACTION FOR 
THE ESTABLISHMENT OF EXPLAINABLE KI
In the previous chapters, technical possibilities were 
presented for ensuring the explainability of AI systems 
for concrete use cases. In the interviews with experts 
conducted for the study, the future technical and regula-
tory challenges and needs for action for the realization 
of explainable AI systems were also discussed.

The experts were asked for their assessments of pre-se-
lected thematic aspects - namely, the relevance and de-
gree of difficulty they attribute to the topics presented in 
each case, as well as the timeframes in which solutions 
could be ready to meet the challenge in question.

First, a summary of the discussion results on the main 
technical challenges for the realization of explainable AI 
systems is provided in section 7.1. The following section 
7.2 contains a summary of the discussion results on the 
main regulatory challenges concerning explainable AI.

7.1 Technical challenges and need for 
action 
Five technical challenges proved to be particularly rele-
vant, each of which was considered both very important 
and solvable by almost all of the experts interviewed on 
the topic. The challenges are shown in Figure 10.

The topic which, according to experts, can and should 
be implemented in the near future is the formulation of  
best practices for the selection of suitable explanato-
ry strategies (to which this study should also make a 
contribution). In the discussion it became clear that best 
practices are already emerging in some areas of sci-
ence, especially in the field of supervised learning. There 
is a growing scientific literature, corresponding software 
prototypes and isolated success stories. However, these 
scientific best practices are often unusable for compa-
nies that do not maintain their own AI research depart-
ments, as the application of explainable AI is mostly 
related to very narrowly defined academic scenarios in 
these cases.

1–2 years 3–5 years 5–10 years 10–15 years

Develop explanatory approach for holistic AI system  
(incorporate psychological/user-centered perspective) 

5–15 y.

Measurability of quality of the explanation from the user‘s point of view 
1–10 y.

Explanation possible for continuously learning systems  
(dynamic explanations)

3–10 y.

Many explanatory tools and strategies tested in practical applications 
2–10 y.

Best practices for the selection of  
suitable explanation strategies

1–6 y.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Timeline (in years)

Figure 10: Result from expert interviews - Biggest challenges for the realization of explainable AI systems from a technical perspec-
tive and possible timeframes for implementation.

Technical challenges for the realization of explainable AI (implementation periods)
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Typical conditions that companies face are usually 
not taken into account: e.g. less AI-affine users, time 
pressure or inhomogeneous data bases characterized 
by disturbances and missing data. Such factors, as well 
as the unclear compliance of the explanatory strategies 
with existing European or international regulatory and 
ethical frameworks, play an important role for compa-
nies, especially SMEs.

Depending on the area of application, the complexity of 
the problem, and the possibility of testing, the experts 
estimate one to five years for the development of 
application-related best practices. This wide range can 
be attributed to the very different requirements (for e.g. 
decision support systems or highly autonomous pro-
cesses) and the lack of a unified understanding of what 
constitutes a “sufficient” explanation.

A large majority of experts also share the impression 
that many methods for explainable AI have not yet been 
sufficiently tested in practice and are therefore in many 
respects still the subject of research. An exception to 
this is the area of language-based explanations in nat-
ural language processing, where large U.S. companies 
such as Google and Facebook already have extensive 
professional and commercially successful implementa-
tions. Apart from this, however, there is often still a large 
gap between scientific theory and industrial implemen-
tation, especially for SMEs: For industry practitioners, 
the published methods are often not sufficiently well im-
plemented and the test problems addressed in scientific 
articles are often not very realistic.  Regardless of these 
obstacles, the interest of companies in explainable AI is 
high, according to the experts. At the same time, several 
experts perceive unresolved regulatory requirements as 
a major hurdle to the practical testing of explainable AI 
and AI in general. Consequently, the experts expect very 
different timeframes (two to ten years) for comprehen-
sive testing of explainable AI due to the different areas 
of application and requirements.

Another area that was also assessed very differently by 
the experts due to the diversity of the AI applications 
and the associated requirements for explanations is 
the perceived difficulty in providing explanations for 
continuously learning systems. According to several 
experts, a technical solution is already possible today 
for certain applications. This is the case when simple 
explanatory strategies that provide specific information 
on individual decisions are sufficient. The same applies 

to pre-trained systems in which the phases of sequential 
(re-)training provide sufficient time to adapt the explana-
tion strategies “offline” as well. “Dynamic” explanations 
that actually adapt individually to the changing system 
and the user, on the other hand, are considered by the 
experts to be much more difficult to implement. Many 
experts believe that solutions are only possible by ex-
panding human-machine interaction. For systems in the 
latter category, several experts do not expect practical 
solutions for another ten years, so in general corre-
sponding solutions are expected in three to ten years, 
according to the interviewees.

The majority of experts also consider the measurability 
of the quality of an explanation from the user’s point of 
view to be an important challenge, for some it even rep-
resents a key issue. This aspect is seen as particularly 
relevant for establishing acceptance and comparability. 
In the development of suitable approaches, methods 
from other disciplines, such as behavioral sciences and 
psychology, should be taken into account. However, the 
concrete implementation still raises questions. An au-
tomated, algorithmic solution is seen as very difficult or 
a major challenge. According to the majority of experts, 
it is more likely that solutions will only be developed for 
specific applications or that a realization will require 
studies with users. Depending on the intended realiza-
tion - studies or algorithmic – timeframes of one to ten 
years are expected für possible solutions.

One challenge, which includes the integration of a 
user-centered perspective and the previously discussed 
measurability of the explanatory quality, is to develop an 
explanatory approach for holistic AI systems. Some ex-
perts emphasize the consideration of approaches from 
psychology and cognitive sciences in this context. A 
major difficulty is that users should also not get a false 
sense of reliability, security, or safety if the AI system is 
not sufficiently comprehensible to them. 

One of the main focuses of appropriate solutions should 
be to enable users to recognize at any time whether 
trust in individual decisions or the behavior of an AI sys-
tem is justified or not. If the human blindly relies on the 
system’s decision, there is a risk of losing problem-solv-
ing skills and technical know-how. While a majority of 
the experts rated the topic as important and challenging, 
some considered it less important. The experts expect a 
timeframe of 5-15 years for possible solutions. 



76 EXPLAINABLE AI

7.2 Regulatory challenges and need 
for action
Various bodies at national and European level are al-
ready actively dealing with the special requirements aris-
ing from the properties of AI systems for their approval. 
Regulatory requirements are generally formulated in 
relation to applications and independently of concrete 
models and procedures. Nevertheless, it is obvious that 
the requirement for the explainability of AI systems, in 
particular, is largely derived from the special property 
of black-box AI systems - being able to make decisions 
without a prefabricated set of rules.

Today, in strictly regulated fields of application such as 
health care, the process industry, critical infrastructures, 
etc., there are usually no clear specifications on the 
part of the legislator to which the responsible approval 
bodies and developers could orient themselves with 
regard to explainability. On the other hand, if specifi-
cations do exist, they are often so challenging from a 
technical point of view that the use of certain AI models 
or methods is implicitly excluded, without this always 
necessarily being justified by the application. Since 
this has an inhibiting effect on the effective use of AI 
methods, regulatory challenges were discussed in the 
interviews with the experts with regard to their signif-
icance and feasibility. The opinion shown in Figure 11 
represents a summary of the results of the discussions 
with all experts.

1–2 years 3–5 years 5–10 years

Establish uniform requirements for explainable AI*  
5–10 y.

Approval of self-learning systems*  
5–10 y.

Explainability requirements 
regarding functional safety *

3–5 y.

Defining benchmarks / 
test procedure  

3–5 y.

Education / training of auditors  
1–5 y. 

0 1 2 3 4 5 6 7 8 9 10
Timeline (in Jahren)

Figure 11: Result from expert interviews - greatest challenges for the realization of explainable AI systems from a regulatory/legal 
perspective and possible timeframes for implementation (assessment of the general development in blue and the partially faster 
expected development in the healthcare industry in yellow).

* The statements of the experts from the health sector are excluded here.

Regulatory challenges for the realisation of explainable AI (implementation periods)

Establish uniform requirements for explainable AI in the healthcare  
2–8 y.

Approval of self-learning systems in the healthcare 
2–8 y.

Explanatory requirements regarding  
functional safety in healthcare 

1–4 y.
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Five aspects proved to be particularly relevant in the 
discussion with the experts: Training and education of 
auditors, definition of benchmarks and test procedures, 
(explainability-related) functional safety, the definition 
of uniform requirements for explainable AI, and the 
approval of self-learning systems. There are differenc-
es in the timeframes that the experts anticipate for 
possible solutions to the regulatory challenges. It was 
noticeable in the interviews that the majority of people 
from the healthcare sector consider shorter cycles for 
the realization of individual aspects to be feasible. In the 
following, the general assessments and the particulari-
ties are discussed.

Among the topics, which, according to the experts, 
can and should be implemented in the comparatively 
short term, the training and further education of the 
auditors is first. Although the lack of corresponding 
expertise is currently perceived as a major obstacle and 
potential bottleneck with regard to approval procedures 
and although very different requirements have to be as-
sessed depending on individual applications (including 
functionality, safety concepts, appropriate involvement 
of domain experts in decision-making processes), most 
experts considered implementation to be possible with-
in three years. Those who also considered the develop-
ment of suitable training programs in their domains to 
be time-consuming estimated three to five years.

The majority of experts considered the establishment 
of benchmarks/testing procedures a possible ba-
sis for how system and explanation behaviour could 
be analysed and validated by approving or certifying 
institutions. However, several experts pointed out that 
benchmarks can only be used for certain applications - 
e.g. autonomous driving, robotics applications - and that 
regular adaptation of the corresponding data sets would 
be absolutely necessary for such a test methodology. 
On the other hand, the high level of comparability and 
the time savings were highlighted as advantages. The 
experts who commented on realistic timeframes ex-
pected a period of three to five years to establish appro-
priate test procedures for suitable target applications.

A majority of the interviewees also considered the as-
pect of functional safety to be an elementary challenge 
for the realization of explainable AI systems from a reg-
ulatory perspective. This underscores the importance of 
explanations of safety aspects - regardless of whether 
humans are the ones who implement analysis results 
or proposed decisions, or corresponding actuators. In 

this context, one expert expressed the view that any AI 
system whose decisions are not reviewed sufficiently 
frequently by an informed user must, in principle, be 
considered autonomous. With regard to current regula-
tory frameworks, there are certain differences among 
the application domains and dependencies on the 
individual degree of automation of the application: in the 
process industry, for example, detailed safety concepts 
must be submitted in accordance with the Hazardous 
Incident Ordinance, irrespective of the algorithms used. 
Such safety concepts, which generally also include 
appropriate system monitoring by qualified employees, 
must not only be comprehensible to the approving au-
thorities at the time of initial approval, but must also be 
adapted to the state of the art and recertified at regular 
intervals. Whereas the obligation to present and imple-
ment safety concepts in the process industry and in 
some cases also in manufacturing (see the Machinery 
Directive) is thus imposed on the plant operator, in other 
areas there is often no established approval practice. 
For the healthcare domain, where autonomous AI-based 
systems are not used in practice due to criticality, but 
only decision support systems, several experts expect 
clarification of functional safety requirements for ex-
plainable AI systems in one to four years.

The clear majority of experts considered setting uniform 
requirements for explainable AI and approving self-learn-
ing systems as key challenges for regulation. 

Thereby, experts working in the healthcare industry 
predict that the definition of concrete requirements for 
explainability will occur more quickly than, for example, 
experts from the application areas of production and the 
process industry. Several experts agree that a European 
solution is urgently needed to define uniform require-
ments for explainable AI. Individual interviewees also 
emphasize the great political dimension of this chal-
lenge, as various countries and bodies in the EU must 
come to common agreements. The lack of uniform 
requirements in the affected sectors is perceived by 
a large amount of experts as a major obstacle to the 
development of explainable AI and to AI in general in 
Germany. This circumstance slows down approvals, the 
willingness to invest and the development of explainable 
AI in general in the affected industries. The dimension 
of this regulatory challenge, which also needs to involve 
harmonization with domain-specific regulation, is also 
reflected in the long predicted timeframe for a possible 
realization of five to ten years.
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According to the experts, it is imperative to find a 
solution for the  approval of self-learning systems. 
This raises the key question of how the relevant criteria, 
which are dependent on the specified requirements, can 
be appropriately reviewed when a system changes. This 
might include, among other things, checking whether a 
system develops ethically unacceptable decision-mak-
ing strategies in the learning process, which may not 
be apparent in the case of initial approval. The major-
ity of those who commented on the general matter 
believe that enabling responsible authorities to approve 
self-learning systems is a challenge, but one that can be 
solved. However, a lone voice felt this was not current-
ly feasible. Several respondents saw no or only little 
challenge in this task, at least for clearly defined areas 
of application. One proposed approach included, for ex-
ample, externally conducted re-certifications that could 
be triggered periodically after models are retrained, 
supported, for example, by a ticket system. However, for 
models that are inevitably subject to permanent change 
- for example, because they have to respond to changes 
in environmental parameters - it is difficult or impossible 
to define meaningful intervals for externally triggered 
certifications. Because quasi-continuous testing by 
external bodies is out of the question in such cases for 
a wide variety of reasons, self-certification by operating 
companies was proposed as a viable option.  
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Concepts exist to distinguish between “black-box” and 
“white-box” models via the three transparency levels 
of simulability, decomposability and algorithmic trans-
parency. Under the assumption of comprehensible 
input variables, white-box models are characterized by 
algorithmic transparency at least. This distinguishes 
them decisively from black-box models, which, even in 
the case of low-complexity models still being of prac-
tical use, do not fulfil any of the three aforementioned 
tranparency properties - especially not the lowest level of 
algorithmic transparency. According to the literature, the 
decisive criterion for algorithmic transparency property 
is whether a model or model generation is sufficiently 
accessible for mathematical analysis. A classification of 
common procedures into the white-box and black-box 
categories as well as the previously mentioned trans-
parency concepts from the literature was provided (see 
Chapter 2).

 It was not surveyed in the context of the study 
how well known the concept of model transparen-
cy is in the respective scientific communities. The 
relevant literature contributions, which also refer to 
explainable AI, have only been published in the last 
five years. However, the common use of ill-defined 
and contradictory terms in the literature as well as 
scientific articles rejecting the categorization of 
models as black box in general or such publication 
doubting the suitability of opaque models (such 
as e. g. neural networks) for critical applications in 
general, indicate all one thing very clearly: The cor-
responding discourses are sometimes still conduct-
ed very differently in the scientific communities. 
A standardization of the taxonomy is still pending 
from the scientific side.

An examination of the established explanatory strate-
gies and tools shows that some individual methods are 
designed to generate explanations only for a specific 
type of AI model. Others can only be used when specific 
types of data are used (see Chapter 3). Specific advan-
tages and disadvantages of using each approach have 
been highlighted, with one thing in particular becoming 
apparent: If only decision explanations (local explaina-
bility) are required, established post hoc analysis tools 
provide opportunities to better understand black-box 
models, e.g. neural networks. Explanation tools such as 
Integrated Gradients and SHAP, which are mainly used 
to explain individual decisions, have already reached 
industrial maturity, but are not very intuitive in their 
handling and are therefore generally to be understood 
as tools for AI developers. For AI users, more intuitive 

approaches such as saliency maps and counterfactual 
explanations are often preferred.

According to the assessment of most developers and 
users, neural network model variants will represent the 
most important model type in the field of artificial intel-
ligence in five to ten years (see Chapter 4). On average, 
around two thirds of those who actively use neural net-
work variants conclude that they can already be partially 
explained today - at least with regard to individual deci-
sions and when using suitable explanatory strategies. 
Conversely, the fact that one third of those who use or 
develop neural networks do not consider them to be 
explainable at all indicates a certain lack of awareness 
of existing analytical tools.

At the same time, a large majority of the persons 
developing or using AI systems for healthcare applica-
tions share the view that respective AI systems must be 
explainable if they are to be used professionally in this 
domain. In various other industries (finance, produc-
tion, construction, process industry, energy industry, 
service sector), a majority of people with relevant 
domain knowledge also consider a certain degree of 
explainability to be indispensable. In these application 
fields, however, this is usually not due to strict approv-
al requirements but due to potential customers and 
users who would simply not accept AI systems for the 
respective “typical” industry applications today if the AI 
is not explainable. The fact that, according to the survey, 
AI explainability will also become increasingly important 
for other stakeholders such as internal auditors, man-
agement and end customers in the future (see Chapter 
4) underscores the perspective need for explainable AI, 
even beyond regulatory requirements.

 The observations on the missing knowledge 
of explainability methods suggest that the sci-
entific-methodological discourse between the 
disciplines of computer science (especially data 
science) and mathematics (especially statistics and 
numerical mathematics) should be fostered in basic 
research and education, as well as the emergence 
of best practices.

The comparison based on four use cases (see chap-
ter 5) shows: Two motivational reasons for the use 
explainable AI are common to all four applications, 
namely to “find” causal relationships and to deter-
mine confidence. The first, more typical, motivation 
is clearly the main reason to use explainable AI in the 
two use cases for anomaly detection - image analysis 
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of histological tissue sections and machine condition 
monitoring. One difference between the two applica-
tions, besides the different data basis, is that in the 
medical case the explainability requirements are defined 
by the regulatory authorities, whereas the medical staff 
supposedly only needs decision explanations (local 
explainability) for operational use. In the case of ma-
chine condition monitoring, on the other hand, there are 
no regulatory requirements whatsoever, although users 
often expect model explanations (global explainability) 
in addition to decision explanations. The solution paths 
are correspondingly different: The requirement of local 
explainability in image analysis is addressed with the 
help of post hoc explanations of a black-box model, 
the requirement of local and global explainability with 
self-explanatory white-box approaches (machine condi-
tion monitoring). In the second case, however, explana-
tions are also “actively” provided: on the one hand, in the 
form of statistical probabilities of occurrence (Bayesian 
networks) and an additional surrogate model, and on the 
other hand, through natural language explanations that 
a user can improve by herself or himself.

In the use case dealing with the text analysis of medi-
cal reports “increasing information gain” is the central 
motivation for using explainable AI. The additional 
information provided by an explainable AI system not 
only enables medical experts to judge whether a cri-
terion (e.g. a symptom) that was decisive for a certain 
classification (e.g. similarity of disease progression of 
two patients) is either medically plausible or not. The 
“explanatory” information also enables to perform a 
more thorough analysis of available patient data and, 
possibly, to draw conclusions with regard to the medical 
treatment (e.g. adjustment of medication). Here, the ba-
sis for providing such decision explanations are nominal 
black-box models (neural networks), which are supple-
mented by prototypes or external knowledge bases, 
so that the resulting model itself can provide medically 
comprehensible reasons for individual decisions. In the 
process control use case, “determining confidences” is 
one of several, but ultimately the decisive overarching 
goal (even if intuitively it is not necessarily associated 
with explainability). Undetected errors in the visual state 
detection or susceptibility to disturbances and bias in 
the “hybrid” models can entail incalculable risks for the 
robust and stable control of the chemical plants.  

Therefore, compared to the other use cases the most 
far-reaching explainability requirements (explainability 
of individual decisions and model effect mechanisms) 
also arise in this case. Here, the approach is to create 

suitable “hybrid” models from mechanistic models and 
simulation data as well as image and sensor data, which 
combine white-box and black-box components to form 
explainable plant models.

 The added value of application-related case 
studies is clearly recognizable. The transferability 
of technological approaches to other ¬fields of 
application is comparatively easy when problems 
are structurally similar, e.g., in terms of data type, 
goals, etc. In this context, it is highly recommend-
ed to increasingly address applications that also 
focus on the explanation of model mechanisms 
(generation of global explainability through “hybrid” 
systems), the interaction between humans and AI 
systems to improve explanations ¬(such as in the 
use case machine condition monitoring), or expla-
nations for (partially) autonomous systems (such as 
in the use case for AI-supported process control). 
So far, these significant application fields have only 
been addressed sporadically in application-oriented 
research.

The experts’ recommendations and the findings from 
the literature were translated into a practical orienta-
tion guide (see Chapter 6). This is intended to provide 
support with regard to the first practical steps in the 
selection of explanatory strategies. A central finding 
here is that, at least for the foreseeable future, there 
will be a lack of explanatory tools that can provide 
detailed and quantitatively usable model explanations 
for black-box models, such as neural networks. In 
principle, therefore, white-box models are always to be 
preferred for corresponding explanatory requirements if 
they perform similarly well in comparison to black-box 
models, or at least sufficiently well with respect to the 
application. If model explanations and the use of black-
box models are required, the use of “hybrid” approaches 
that combine white-box and black-box components and 
provide independent explanations is also promising in 
perspective32. If explanations of individual decisions are 
sufficient, the “orientation tree” offers a decision-making 
aid with regard to the explanatory strategies discussed 
in Chapter 3.

32 Individual procedures are currently being developed or refined in research 
projects and some of them were presented in the study (KEEN and Ser-
vice-Meister projects of the BMWK technology programme AI Innovation 
Competition and the RAKI project of the BMWK technology programme 
Smart Data Economy).
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 Although the orientation aid takes into ac-
count the most cited approaches (in the case of 
their practical applicability), it thus only represents 
a snapshot of the state of the art. In the sense of 
completing best practices, it is generally advisable 
to continue in this direction and, in particular, to give 
greater consideration to quantitative comparisons 
and the examination of the transferability of ap-
proaches.

With regard to the technical challenges for explainable 
AI, it is obvious that there is yet no completed collection 
of best practices available that companies, especially 
SMEs, can take advantage of and that cover sufficient 
fields of application (see Chapter 7). Closely related to 
this is the deficit that academic scientific research often 
examines example applications which are far from prac-
tice and that algorithms are rarely tested on real-world 
problems (which is common practice e.g. in research 
institutions of individual high-tech companies).

 Individual success stories and research pro-
jects (see use cases) address user requirements 
regarding the comprehensibility of AI already on a 
selective basis. However, the survey results and the 
statements of the experts suggest that the market 
demand for explainable AI will continue to grow. It 
is therefore recommendable to support the devel-
opment of industry-specific solutions with targeted 
applied research activities.

 Regarding the deficits observed by most ex-
perts and the richness of methodological approach-
es, it is highly recommendable to put the efficiency 
and user-friendliness of solutions of real problems 
from practice more in the center of research activi-
ties.

 In order to strengthen the user perspective, 
which according to the experts is sometimes 
neglected, and to address the existing gap between 
science and industry, quantitative comparisons 
between alternative approaches and the state of the 
art should always be made whenever possible.

 The new and further development of suitable 
“hybrid” approaches that combine data-driven and 
knowledge-driven approaches - or white-box and 
black-box modeling approaches - can be fostered by 
establishing interdisciplinary application-oriented 
research networks consisting of experts from com-
puter science, mathematics (statistics, numerical 
analysis), and the various application disciplines.

The consideration of behavioral or cognitive science 
aspects of explainable AI (measurability of the quality of 
an explanation, explainability of holistic AI systems, au-
tomated explanation adaptations to users and self-learn-
ing systems) is seen by a majority of the interviewed 
experts as an important research direction and currently 
a major challenge.

 The experts’ statements on the user-centric 
topics of explainable AI and their assessment that 
solutions can be expected only in the medium to 
long term make it clear: There are various open 
questions here that must first be answered by basic 
scientific research. 

In general, the technical challenges are considered sur-
mountable by the interviewed experts. Nevertheless, as 
mentioned before, in many potential target industries of 
explainable AI, systems are subject to approval. In most 
of these industries, e.g. healthcare, there is a lack of 
clear regulatory requirements or approval guidelines to 
which companies can orient themselves (and align their 
technical developments with).



858 | CONCLUSION

 So far, there is no definition of application and 
risk classes from which it can be derived whether 
the provision of explanations is fundamentally nec-
essary. Likewise, there is a lack of clarity in existent 
regulatory requirements for explainability, which 
should be formulated as uniformly and quantita-
tively as possible and refer to the application or risk 
class level. There will possibly be a risk classifica-
tion on the basis of the proposal for the regulation 
of AI to be published by the EU shortly*. Neverthe-
less, it cannot be expected that this will provide 
industry- and application-specific explainability 
requirements or quantitative approval and certifica-
tion guidelines for AI products. It is therefore rec-
ommendable – also with regard to the slow imple-
mentation processes expected by the interviewed 
experts – to develop specific approval and certifica-
tion guidelines for AI products as soon as possible, 
at least for the areas of application of explainable AI 
that are most important from a social and econom-
ic point of view in Germany.  Such a project for the 
development of guidelines should involve represent-
atives from science, industry and standardization, 
as well as testing/certification institutions, in order 
to achieve the broadest possible social consensus 
on the one hand and to ensure practical feasibility in 
testing and certification on the other.  
* At the time of the study’s editorial deadline, publication was assumed to take 
place in April 2021, as announced by the EU Commission.

With regard to the most important regulatory challenges 
(see Chapter 7), the following picture emerges: The lack 
of uniform regulatory requirements for the explainability 
of AI is currently the greatest obstacle to the develop-
ment of explainable AI systems. Approval processes in 
the affected industries are delayed and, as a result, the 
willingness to invest in the development of explainable 
AI is also slowed down. Indirectly, however, this situation 
also has an impact on the development of innovations in 
other unregulated areas, as innovations or “technology 
pushes” with regard to explainable AI do not occur. In 
the opinion of the interviewed experts, it is also clear 
that mechanisms for the approval and (re-)certification 
of self-learning systems must be found at the same 
time. It is a cause for concern that many experts expect 
regulatory requirements for explainability, which should 
be uniform throughout Europe, to be defined only in five 
to ten years. The experts with domain knowledge in 
healthcare expect a slightly faster progress in some are-
as, especially for the design of explainable AI in terms of 
functional safety and the physical integrity of patients. 
At the same time, the majority of experts, regardless of 
their specialization, estimate only three to five years for 
establishing test procedures and benchmarks.

The training and further education of examiners will 
be an enormously important task in the future, since 
these persons will have to perform many tasks of great 
social significance: Pre-trained systems, systems that 
are frequently re-trained on the basis of updated training 
data, and continuously learning systems must be initially 
approved and then regularly recertified.

This could become a bottleneck for the approval of AI 
products. Taking into account the fact that training pro-
grammes need to be designed, the experts estimate one 
to five years to implement this measure.
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A OVERVIEW OF AI METHODS AND MODELS

AI methods can be used to find or at least approximate 
solutions to a wide variety of classification, regression 
and clustering problems33. The terms AI and machine 
learning are often used synonymously. Machine learning 
is about an algorithm “learning” to solve a problem34 
based on training data. During the actual learning pro-
cess, the degrees of freedom of a given model structure 
are adapted to the respective data or the specific prob-
lem. The “ssessment” of new, unknown data according 
to the task is then carried out via a corresponding evalu-
ation of the adapted “AI model”.

The actual fitting of the models may require the manip-
ulation of a few or millions of parameters, depending 
on the specific number of degrees of freedom of the 
model. While the fitting of a linear regression model in a 
simple case only requires the determination of a single 
model parameter in order to relate dependent variables 
to independent variables, the fitting of multi-layered 
models that exhibit strong interconnectedness, such 
as neural networks, usually requires the adjustment of 
hundreds of parameters. If we are even dealing with 
so-called deep (neural) networks - i.e. if the network 
comprises many parameters and layers (whereby there 
is no precise definition for “many”) - we quickly deal with 
millions of parameters that have to be adjusted. In this 
case, one also speaks of “deep learning”.

33 The goal of a classification is to assign input values to a (discrete) class 
or group. An example of this is image classification: images depicting 
animals must be assigned to one of the two classes “dog” or “cat”. 
Regression is used to map the relationship of a dependent variable, e.g. 
human body size, from independent variables such as human shoe size. 
Clustering involves analyzing similarities and differences in data and 
grouping them accordingly. For example, in marketing, groups of similar 
products are formed (without these groups having to be known before-
hand) in order to be able to present the customer with suitable offers 
during an online search.

34 Learning methods are often divided into supervised, unsupervised, 
semi-supervised and reinforcement learning methods. In supervised 
learning, the algorithm is given pairs of input and output values that 
specify what result is expected given a particular input. On this basis, the 
algorithm learns to correctly assign new inputs as well. In unsupervised 
learning, only input values are provided. The algorithm must independent-
ly recognize structures in the data. Semi-supervised learning combines 
both methods described above. In reinforcement learning, the algorithm 
independently learns a strategy based only on positive or negative feed-
back (Alloghani et al. 2020; Oladipupo 2010).

Selected AI models and techniques are briefly described 
below..

An autoencoder is a neural network used for com-
pressed encoding of data. The autoencoder consists of 
two components: an encoder, which compresses the 
input data, and a decoder, which reconstructs the orig-
inal data from the compressed data. The encoder and 
decoder can also be used separately. Typical applica-
tions include anomaly detection or dimension reduction 
(Badr 2019).

Bayesian networks are probabilistic or graphical mod-
els that take the form of directed acyclic graphs whose 
nodes describe random variables and whose edges 
describe conditional probabilities. They are particularly 
well suited for quantifying probabilities for the possible 
cause of events that have occurred. Bayesian networks 
can be used, for example, to solve decision problems 
under uncertainty.

Clustering models are used to automatically divide a 
data set into subsets of similar data points. The com-
monly used K-Means-Clustering algorithm is a fast 
iterative algorithm that, after initially randomly selecting 
cluster centers, continues to adjust them so that the 
“clustering error” is minimized.

Neural networks frequently used in image processing 
are Convolutional Neural Networks (CNNs). Due to 
the local network architecture between layers (similar 
to the layers in the visual cortex), their evaluation can 
be performed as convolution. CNNs are particularly 
suitable for application areas where adjacency between 
features plays a role, e.g. pixels in an image or words in 
a sentence. Similar to the visual regions of the mamma-
lian brain, the receptive fields become larger from layer 
to layer and the complexity of the features to which the 
units respond increases.

Dimension reduction is used to reduce the number of 
data or features, e.g., to reduce the computational com-
plexity of a data processing process or to extract the 
most important characteristics of a data set. Principal 
Components Analysis (PCA) is an example of a method 
where features are transformed unsupervised. On the 
other hand, the computation of the information-. content 
can be used to select supervised special features. Other 
examples include t-SNE (t-distributed stochastic neigh-
bor embedding) and LDA (linear discriminant analysis) 
(Cunningham 2008; Ba-lakrishnama and Ganapathiraju 
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1998). Auto-Encoding Neural Networks can also be used 
to achieve dimension reduction (see above).

In ensemble models, rather than learning a single func-
tion or model for classification or regression based on 
data, several different redundant ones are learned. The 
results of these are then merged, for example via forma-
tion of the weighted average or majority voting. The goal 
of using ensemble models is to derive a “strong” classifi-
er (strong learner) from several “weak” classifiers (base 
classifiers/weak learners). The individual classifiers 
must be both accurate and diverse. Random Forest is a 
well known ensemble model based on single decision 
trees. However, different models (e.g. decision trees and 
neural networks) can also be combined in an ensemble 
(Goos et al. 2000).

The idea behind decision trees is to divide a complex 
decision into several simple decisions. Decision trees 
are hierarchical structures that can be used for both 
classification and regression. Exemplary algorithms for 
creating decision trees are ID3 or C4.5. Decision trees 
are usually easy to understand even for laymen, since at 
each point within the tree it can be seen which decision 
has just been made (Mitchell 2010; Arrieta et al. 2019).

Expert systems (or knowledge-based systems) are 
knowledge databases built on the knowledge of experts 
(usually represented as if-then logic), which can derive 
conclusions and recommendations for action from the 
knowledge base or check the truth of statements using 
inference mechanisms. To build a knowledge-based 
system, it is necessary to have detailed knowledge of 
the application domain and to formalize it according to 
a problem-solving strategy. Expert systems are usually 
well understood (Karst 1992; Puppe 1988; Spreckelsen 
and Spitzer 2009; Wagner 2000; Lucas and Van der 
Gaag, Linda C. 1991). 

Generative Adversarial Networks (GANs) is a neural 
network training method that is used especially when 
the amount of training data is limited. Two different 
networks are trained: One (called the generator) pro-
duces data that looks as realistic as possible, the other 
(the discriminator) tries to distinguish real data from the 
synthetically produced ones. Both networks are trained 
competitively with the goal of producing synthetic data 
that is as realistic as possible, i.e., data that the dis-
criminator can no longer distinguish from the training 
data. These can be used to extend the training base 
or to complete incomplete datasets in the application 
(Creswell et al. 2017).

Long Short Term Memory Networks (LSTMs) belong to 
the group of Recurrent Neural Networks (RNNs). LSTMs 
are particularly well suited for processing sequences 
of data, e.g. speech. The advantage over RNNs is that 
“learned” information can be retained longer - and thus 
contextual information as well.

Mathematical optimization refers to a methodology 
for minimizing or maximizing a mathematical objective 
function, where variables may be subject to constraints. 
If objective functions and constraints are linear func-
tions with respect to the decision variables, one speaks 
of linear optimization, otherwise of nonlinear optimiza-
tion. The analytical solution of optimization problems is 
rarely possible, so that numerical solution methods are 
usually used to find parameters that meet the respective 
optimality criteria. The use of highly efficient solution 
methods is in fact inevitable for the solution of nonlinear 
optimization problems - especially if complex models 
are involved via constraints.

Metaheuristics can be used to explore search spaces 
with different strategies. Heuristics are used to find the 
best possible approximate solutions to optimization 
problems that are too complex to solve exactly. In this 
context, a metaheuristic is often viewed as a higher-level 
strategy that is used to guide “lower-level” heuristics 
to find suitable solutions. An example algorithm for a 
metaheuristic is Simulated Annealing (Bianchi et al. 
2008; Voß 2001).

Neural networks consist of several layers, which in 
turn consist of individual units with a (usually nonlinear) 
transfer function that transfers the sum of the inputs 
into an output that is passed on to the next layer via 
weighted links. A network consists of an input layer, at 
least one hidden layer and an output layer. The number 
of layers is also called the depth of the network. The 
weights of the links and the parameters of the transfer 
function are adjusted as the network is trained. The 
complexity of neural networks - number of units and 
layers as well as weights of the individual connections 
and thus dependencies between the units - lead to the 
fact that these models are hardly comprehensible.

Regression models represent the relationship between 
one or more dependent variables and one or more 
independent variables. In linear regression, the assump-
tion is made that the dependent variable is continuous 
and has a linear relationship with the input variables. 
In logistic regression, the dependent variable is con-
sidered to be binary. Logistic regression is widely used 
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and is also applied, for example, within neural networks 
(Cucchiara 2012; Karlaftis and Vlahogianni 2011). The 
two examples presented - linear and logistic regression 
models - are classified as statistical and probabilistic 
models, respectively. Regression models are usually 
easy to interpret.

The idea of reinforcement learning is that an “agent” 
interacts autonomously with its environment to achieve 
a goal. The autonomous agent must find its way around 
its environment and perform interactions for which it 
receives a reward, penalty, or neutral feedback from its 
“trainer”. The agent must develop a strategy that max-
imizes the number of rewards. The agent has a lot of 
interaction possibilities and usually cannot perceive his 
environment completely, but only partially and possibly 
subject to noise. Based on the perceived environment, 
an action is selected and performed that changes 
the environment. This change is in turn perceived by 
the agent again. Examples of reinforcement learning 
algorithms include Q-learning or SARSA (Kaelbling et al. 
1996; Mitchell 2010; Harmon and Harmon 1997; Sutton 
and Barto 2010).

Recurrent neural networks (RNNs) represent a type 
of neural network in which units can be connected to 
themselves, to units of the same layer, or to units from 
previous layers. This creates circles in the connectivity 
structure, which transforms these neural networks into 
dynamic systems. RNNs can represent complex dynam-
ic relationships and have a “memory”; however, they are 
more computationally expensive to train for the same 
number of units. RNNs are used, for example, in speech 
recognition.

Statistical and probabilistic models have always been 
used to evaluate measurement data and to derive esti-
mates and predictions about the modeled phenomena 
from measured and known probability distributions. 
The methods of statistics are to some extent similar to 
those of machine learning and can be used for simi-
lar goals - e.g., prediction or classification. However, 
such approaches require that the choice of the model 
is based on clear and comprehensible assumptions 
regarding the underlying data and processes. For data 
sets whose structure is very complex or unknown, “as-
sumption-free” machine learning models are therefore 
often more suitable. An example for statistical models 
are regression models.

Support Vector Machines (SVMs) were originally 
developed to solve binary classification problems, but 
can also be used for other problems such as regres-
sion. With the help of SVMs, a nonlinear problem can 
be transformed into a linear one. SVMs, due to their 
good performance and efficient training procedures (in 
contrast to NNs), are often the first choice when ML 
problems of reasonable complexity are to be solved. 
However, SVMs themselves can also become very 
complex, such that the lack of comprehensibility can be 
a concern.

Transformer Networks are a type of neural networks 
that are specifically applied in language processing, for 
example for translation tasks, the generation of texts 
or summaries. Transformer Networks consist of two 
components: the encoder and the decoder. The encoder 
creates a representation of an input, then the decoder 
generates a corresponding output word by word (Uszko-
reit 2017). 

The basis for knowledge graphs and Semantic Web 
technologies are models for representing knowledge 
that can be read and “understood” by computers. Purely 
data-driven ML methods have the problem that they can 
only recognize patterns in the data, but cannot put these 
patterns into the broader real-world context. Knowledge 
graphs can provide this context. These models are 
used as the basis for reusing the “linked” information in 
intelligent systems. The goal of the Semantic Web is to 
identify more detailed information more quickly and to 
increase semantic interoperability on the Internet. This 
is done with the help of ontologies, which in turn specify 
concepts that are essential or important within an 
application domain. Different languages are developed 
to represent these ontologies: Examples are the Re-
source Description Framework (RDF), the Web Ontology 
Language (OWL) and the Rule Interchange Format (RIF) 
(Hitzler 2008).  
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