Technologie-Workshop , Big Data“
FZI| Karlsruhe, 22. Juni 2015 Technische

Universitat
Berlin

GEFORDERT VOM

&Dc * | Bundesministerium

fiir Bildung
und Forschung

BERLIN BIG

Introduction to Apache Flink DATA CENTER

Christoph Boden | stv. Projektkoordinator Berlin Big Data Center (BBDC) | TU Berlin DIMA

Introducing the

&8DC

BERLIN BIG
DATA CENTER

http://bbdc.berlin

“Data Scientist” — “Jack of All Trades!”

Domain Expertise (e.g., Industry 4.0, Medicine, Physics, Engineering, Energy, Logistics)
Mathematical Programming

_ Relational Algebra / SQL
Linear Algebra

Application Data Warehouse/OLAP

Stochastic Gradient Descent

Error Estimation NF2/XQuery

Active Sampling Resource Management

Hardware Adaptation

Regression
Fault Tolerance
Monte Carlo ,
. Data Memory Management
Statistics . L
Sclence Parallelization
Sketehes Scalability
Hashing Memory Hierarchy
Convergence : Data Analysis Language
Decoupling Compiler

Query Optimization

lterative Algorithms .
Indexing Data Flow

Curse of Dimensionality Control Flow Real-Time

Machine Learning + Data Management = X

Think ML-algorithms
in a scalable way
Feature Engineering Declarative Languages
Representation declarative Automatic Adaption
Algorithms (SVM, GPs, etc.) Scalable processing

Process iterative
algorithms
in a scalable way

Goal: Data Analysis without

System Programming!

ZIB Berlin

&€3DC

Alexander

Beuth Hochschule

Stefan Edlich
Software Engineering
o Fritz-Haber-Institut,

Christof
Schitte Reinefeld BERLIN BIG
Information- File Systems, DATA CENTER

based Medicine Supercomputing

Technische Universitat Berlin, Data Analytics Lab

L 4

NV il 3
Volker Klaus R. Anja Thomas
Markl Muller Feldmann Wiegand
Data Management Machine Computer Distributed Video Mining
Learning Networks Systems

Max-Planck-Gesellschaft

Matthias
Scheffler

Material Science

Hans Uszkoreit
Language Technology @ I Federal Ministry

SPONSORED BY THE

of Education
and Research

http://bbdc.berlin

X = Big Data Analytics — System Programming!
(,What“, not ,How")

Machine

Data Analyst

Larger human base of ,data scientists*”

Reduction of ,human” latencies
Cost reduction

. . H H ut)
Description of ,What"“? State of the art i DE’;SE?ng? of "HIOW_ :
(declarative specification) (State of the art in scalable Ha a(tjana yI\S/IIFS>)I
Technology X adoop,
Think ML-algorithms ~ Analysis of Declarative specification Algorithmic process

in a scalable way *“data in motion” fault tolerance lterative algorithms
Automatic optimization, in a scalable way
Multimodal parallelization and hardware adaption Consistent
analysis of dataflow and control flow intermediate results
with user-defined functions,
, iterations and distributed state Software-defined
Numerical :
. networking
stability

Scalable algorithms and debugging

Application Examples:
Technology Drivers and Validation

‘ Think ML-algorithms
in a scalable way
[echnology X
Process iterative algorithms

in a scalable way

hierarchical
numerical
simulation data

v

text data flows
multimodal data integration:
video, images, text

numerical
stability

windowing
Application example:

Marketplace

Application Example:

Material

Application Example:

for Health

. . science
iInformation

economics-based society-based science-based

Open source data infrastructure

a N

Hive } {Cascading

Applications) g

Data processing

engines

App and resource

management [Yarn } [Mesos]

Storage, streams HDFS {HBase} [Kafka} L }

Engine paradigms & systems

O O

oo Apache Hadoop 1
(OSDI'04)
Dryad, Nephele Apache Tez
(EuroSys’07)
PACTs Apache Flink

(SOCC'10, VLDB'12)

@- @

RDDs Apache Spark
(HotCloud'10, NSDI'12)

Engine comparison

‘@ha@@@ Spqr‘ll(\z

mapg Hedur:e FI In k
Transformation Iterative
MapReduce on ansionnansns lefallve
API K/ . on k/v pair transformations
Vv pairs collections on collections

Batch Batch with Stream with
memory out-of-core
pinning algorithms

Execution sorting

APACHE FLINK

Flink ML
Machine Learing
Gelly
Graph API & Library
Table API
Batch
Table API
Streaming

ks
£
2 DataSet API DataStream API
é Batch Processing Stream Processing
o Runtime
S Distributed Streaming Dataflow
3 Lo Clu
L V i V V V

An open source platform for scalable batch and stream data processing.

Data sets and operators

Program

B0 B0 BN

Operator X Operator Y

Parallel Execution

13

Rich operator and functionality set

Map, Reduce, Join, CoGroup, Union, lterate,
Delta Iterate, Filter, FlatMap, GroupReduce,

Project, Aggregate, Distinct, Vertex-Update,

Accumulators

&y
Source

Source

Base-Operator: Map

Base-Operator: Reduce

Base-Operator: Cross

[]
| |
sadl Bn) mujil =] ==
sadl B8] Euji[==l ws|
N= S

Base-Operator: Join

Base-Operator: CoGroup

WordCount in Java

ExecutionEnvironment env =
ExecutionEnvironment.getExecutionEnvironment();

DataSet<String> text = readTextFile (input);

DataSet<Tuple2<String, Integer>> counts= text
.map (1 -> 1l.split(“\\W+”))
.flatMap ((String[] tokens,
Collector<Tuple2<String, Integer>> out) -> {

Arrays.stream(tokens)
.filter(t -> t.length() > 0) TEBIEE
.forEach(t -> out.collect(new Tuple2<>(t, 1)));

})

.groupBy(9)

.sum(1);

flatMap

env.execute("Word Count Example");

20

WordCount in Scala

val env = ExecutionEnvironment
.getExecutionEnvironment

val input = env.readTextFile(textInput)

val counts = text
.flatMap { line => line.split("\\W+") }
.filter { term => term.nonEmpty }
.map { term => (term, 1) }
.groupBy(0)
.sum(1)

env.execute()

flatMap

reduce

21

Long operator pipelines

DataSet<Tuple...> large = env.readCsv(...);
DataSet<Tuple...> medium = env.readCsv(...);
DataSet<Tuple...> small = env.readCsv(...);

¥
X

DataSet<Tuple...> joinedl = o s\\
large.join(medium) N
.where(3).equals(1) / \
.with(new JoinFunction() { ... });
DataSet<Tuple...> joined2 = large

small.join(joinedl)
.where(0@).equals(2)
.with(new JoinFunction() { ... });

DataSet<Tuple...> result = joined2.groupBy(3)
.max(2);

22

Beyond Key/Value Pairs

DataSet<Page> pages = ...;
DataSet<Impression> impressions = ...;

DataSet<Impression> aggregated =
impressions
.groupBy("url")
.sum("count");

pages.join(impressions).where("url”).equalTo("url™)

// custom data types

class Impression { class Page {
public String url; public String url;
public long count; public String topic;

23

Flink’s optimizer

inspired by optimizers of parallel database systems
— cost models and reasoning about interesting properties

physical optimization follows cost-based approach
— Select data shipping strategy (forward, partition, broadcast)
— Local execution (sort merge join/hash join)

— keeps track of interesting properties such as sorting, grouping and
partitioning

optimization of Flink programs more difficult than in the relational
case.

— no fully specified operator semantics due to UDFs

— unknown UDFs complicate estimating intermediate result sizes

— no pre-defined schema present

Optimization example

case class Order(id: Int, priority: Int,
case class Item(id: Int, price: double,)

val orders = DataSource(...) case class PricedOrder(id, priority, price)

val items = DataSource(...)
val filtered = orders filter { ... }

val prio = filtered join items where { _.id } isEqualTo { _.id }
map {(o,1i) => PricedOrder(o.id, o.priority, li.price)}

val sales = prio groupBy {p => (p.id, p.priority)} aggregate ({_.price},SUM)

(0,1) | Grp/Agg

Grp/Agg
T Join

(0) =(0) Join

i

7N

sort (0,1)

sort (0)

(@) | Filter parltition(O) \
Filter partition(0)
T) |
Orders Items Orders Items

25

Memory management

Flink manages its own memory

User data stored in serialize byte arrays

In-memory caching and data processing happens in a dedicated memory
fraction

Never breaks the JVM heap

Very efficient disk spilling and network transfers

Unmanaged e T —— -

Heap — B
o B public class WC { %
8 B] public String word;
T BT public int count;
- | BT _’:
> [Flink Managed o

Heap empty o

page
Network Buffers
Pool of Memory Pages

26

Built-in vs. driver-based iterations

Loop outside the
system, in driver
program

Iterative program
looks like many
independent jobs

Dataflows with
feedback edges

System is iteration-
aware, can optimize
the job

27

“Iterate” operator

Ilterate

parfial
solution

partial
solution

]

) ————————— - -

Step function /

’

e Built-in operator to support looping over data
e Applies step function to partial solution until convergence
e Step function can be arbitrary Flink program

e Convergence via fixed number of iterations or custom convergence
criterion

28

“Delta Iterate” operator

Delta-Iterate

partial
solution

Merge deltas

e compute next workset and changes to the partial solution until
workset is empty

e generalizes vertex-centric computing of Pregel and GraphLab

29

ReCap: What is Apache Flink?

Apache Flink is an open source platform for
scalable batch and stream data processing.

e The core of Flink is a distributed

streaming dataflow engine.

e Executing dataflows in parallel

on clusters

* Providing a reliable foundation

for various workloads

e DataSet and DataStream

programming abstractions are the
foundation for user programs and

higher layers

Core APIs & Libraries

Deploy

o 5
| =
8 x T)
2 = 15 s E
= < o £ o g
£ %‘ & a8 -]
s &G © Qg e &
DataSet API DataStream API

Batch Processing Stream Processing

Runtime
Distributed Streaming Dataflow

Local Cluster Cloud
Single JVM, Standalone, GCE,
Embedded YARN EC2

http://flink.apache.org

Working on and with Apache Flink

* Flink homepage
https://flink.apache.org

* Flink Malling Lists
https://flink.apache.org/community.html#mailing-lists

* Flink Meetup in Berlin
http://www.meetup.com/de/Apache-Flink-Meetup/

Flink community

120 © #unique contributor ids by git commits :
100 - s
80 - &

60 - '

\,

40

20 - p.

O . T T T T T T T T 1
Aug 10 Feb 11 Sep 11 Apr 12 Okt12 Mai 13 Nov 13 Jun 14 Dez 14 Jul 15

Evolution of Big Data Platforms

In-memory + Out of Core Performance, Declarativity,
Optimisation, Iterative Algorithms, Streaming/Lambda

[Spark

In-memory Performance and
Improved Programming Model

Hadoop
Scale-out, Map/Reduce, UDFs

Relational Databases

1G

Is Apache Flink Europe’s Wild Card into
the'Big Data Race?

How an ultra-fast data engine for Hadoop could secure Europe’s place in the

future of open-source

The cards are dealt anew!

Forbes on Apache Flink:

 [...] Flink, which is also a top-level project of the Apache
Software Foundation, has just recently begun to attract
many of the same admiring comments directed Spark’s way
12-18 months ago. Despite sound technical credentials,
ongoing development, big investments, and today’s high-
profile endorsement from IBM, it would be unwise (and
implausible) to crown Spark as the winner just yet. [...]”

http://www.forbes.com/sites/paulmiller/2015/06/15/ibm-backs-apache-spark-for-big-
data-analytics/

e http://www.infoworld.com/article/2919602/hadoop/flink-hadoops-new-contender-for-
mapreduce-spark.html

e http://www.datanami.com/2015/06/12/8-new-big-data-projects-to-watch/

Flink

BERLIN 12/13 0CT 20153

Two day developer conference with in-depth talks from
— developers and contributors
— industry and research users
— related projects

Flink training sessions (in parallel)

— System introduction, real-time stream processing, APIs on top

Flink Forward registration & call for abstracts is open now at
http://flink-forward.org/

